虚拟环境中用于康复训练的上肢外骨骼研制

Qingcong Wu, Xingsong Wang
{"title":"虚拟环境中用于康复训练的上肢外骨骼研制","authors":"Qingcong Wu, Xingsong Wang","doi":"10.1109/MFI.2017.8170425","DOIUrl":null,"url":null,"abstract":"In recent years, a great many robot-assisted therapy systems have been developed and applied in neural rehabilitation. In this paper, we develop a wearable upper limb exoskeleton robot for the purpose of assisting the disable patients to execute effective rehabilitation. The proposed exoskeleton system consists of 7 degrees of freedom (DOFs) and is capable of providing naturalistic assistance of shoulder, elbow, forearm, and wrist. The major hardware of the robotic system is introduced. The Denavit-Hartenburg (D-H) approach and Monte Carlo method are utilized to establish the kinematic model and analyze the accessible workspace of exoskeleton. Besides, a salient feature of this work is the development of an admittance-based control strategy which can provide patient-active rehabilitation training in virtual environment. Two preliminary comparison experiments are implemented on a healthy subject wearing the exoskeleton. The experimental results verify the effectiveness of the developed robotic rehabilitation system and control strategy.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of an upper limb exoskeleton for rehabilitation training in virtual environment\",\"authors\":\"Qingcong Wu, Xingsong Wang\",\"doi\":\"10.1109/MFI.2017.8170425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, a great many robot-assisted therapy systems have been developed and applied in neural rehabilitation. In this paper, we develop a wearable upper limb exoskeleton robot for the purpose of assisting the disable patients to execute effective rehabilitation. The proposed exoskeleton system consists of 7 degrees of freedom (DOFs) and is capable of providing naturalistic assistance of shoulder, elbow, forearm, and wrist. The major hardware of the robotic system is introduced. The Denavit-Hartenburg (D-H) approach and Monte Carlo method are utilized to establish the kinematic model and analyze the accessible workspace of exoskeleton. Besides, a salient feature of this work is the development of an admittance-based control strategy which can provide patient-active rehabilitation training in virtual environment. Two preliminary comparison experiments are implemented on a healthy subject wearing the exoskeleton. The experimental results verify the effectiveness of the developed robotic rehabilitation system and control strategy.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,许多机器人辅助治疗系统在神经康复领域得到了发展和应用。在本文中,我们开发了一种可穿戴的上肢外骨骼机器人,旨在帮助残疾患者进行有效的康复。该外骨骼系统由7个自由度组成,能够为肩部、肘部、前臂和手腕提供自然的辅助。介绍了机器人系统的主要硬件组成。采用Denavit-Hartenburg (D-H)法和蒙特卡罗法建立了外骨骼的运动学模型,分析了外骨骼的可达工作空间。此外,本工作的一个显著特点是开发了一种基于入院的控制策略,可以在虚拟环境中提供患者主动康复训练。在健康受试者身上进行了两次初步对比实验。实验结果验证了所开发的机器人康复系统和控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an upper limb exoskeleton for rehabilitation training in virtual environment
In recent years, a great many robot-assisted therapy systems have been developed and applied in neural rehabilitation. In this paper, we develop a wearable upper limb exoskeleton robot for the purpose of assisting the disable patients to execute effective rehabilitation. The proposed exoskeleton system consists of 7 degrees of freedom (DOFs) and is capable of providing naturalistic assistance of shoulder, elbow, forearm, and wrist. The major hardware of the robotic system is introduced. The Denavit-Hartenburg (D-H) approach and Monte Carlo method are utilized to establish the kinematic model and analyze the accessible workspace of exoskeleton. Besides, a salient feature of this work is the development of an admittance-based control strategy which can provide patient-active rehabilitation training in virtual environment. Two preliminary comparison experiments are implemented on a healthy subject wearing the exoskeleton. The experimental results verify the effectiveness of the developed robotic rehabilitation system and control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信