Syed M. N. Hasan, Arnob Ghosh, S. Sadaf, S. Arafin
{"title":"InGaN量子盘厚度对GaN纳米线光学性能的影响","authors":"Syed M. N. Hasan, Arnob Ghosh, S. Sadaf, S. Arafin","doi":"10.1109/CSW55288.2022.9930390","DOIUrl":null,"url":null,"abstract":"The optical emission properties of axial InGaN/GaN nanowires with different InGaN quantum disk (Qdisk) thicknesses are experimentally investigated using a combination of photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. Both the spectroscopic measurements from the average InGaN Qdisk-related emissions reveal the presence of built-in piezoelectric strain as evidenced by the luminescence blueshift with increasing pump signal. To determine the material compositions and their spatial uniformity, transmission electron microscopy with energy-dispersive x-ray spectroscopy were also performed. Systematic analysis of the optical emission properties with the change of Qdisk thickness serves to advance the understanding of, in general, III-nitride nanostructures for the implementation of classical and non-classical optoelectronic devices.","PeriodicalId":382443,"journal":{"name":"2022 Compound Semiconductor Week (CSW)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of InGaN Quantum Disk Thickness on the Optical Properties of GaN Nanowires\",\"authors\":\"Syed M. N. Hasan, Arnob Ghosh, S. Sadaf, S. Arafin\",\"doi\":\"10.1109/CSW55288.2022.9930390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical emission properties of axial InGaN/GaN nanowires with different InGaN quantum disk (Qdisk) thicknesses are experimentally investigated using a combination of photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. Both the spectroscopic measurements from the average InGaN Qdisk-related emissions reveal the presence of built-in piezoelectric strain as evidenced by the luminescence blueshift with increasing pump signal. To determine the material compositions and their spatial uniformity, transmission electron microscopy with energy-dispersive x-ray spectroscopy were also performed. Systematic analysis of the optical emission properties with the change of Qdisk thickness serves to advance the understanding of, in general, III-nitride nanostructures for the implementation of classical and non-classical optoelectronic devices.\",\"PeriodicalId\":382443,\"journal\":{\"name\":\"2022 Compound Semiconductor Week (CSW)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Compound Semiconductor Week (CSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSW55288.2022.9930390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Compound Semiconductor Week (CSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSW55288.2022.9930390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of InGaN Quantum Disk Thickness on the Optical Properties of GaN Nanowires
The optical emission properties of axial InGaN/GaN nanowires with different InGaN quantum disk (Qdisk) thicknesses are experimentally investigated using a combination of photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. Both the spectroscopic measurements from the average InGaN Qdisk-related emissions reveal the presence of built-in piezoelectric strain as evidenced by the luminescence blueshift with increasing pump signal. To determine the material compositions and their spatial uniformity, transmission electron microscopy with energy-dispersive x-ray spectroscopy were also performed. Systematic analysis of the optical emission properties with the change of Qdisk thickness serves to advance the understanding of, in general, III-nitride nanostructures for the implementation of classical and non-classical optoelectronic devices.