Teoh Teik Toe, Y. Nguwi, Y. Elovici, Ngai-Man Cheung, W. Ng
{"title":"基于分析师直觉的隐马尔可夫模型在高速、瞬时网络安全大数据中的应用","authors":"Teoh Teik Toe, Y. Nguwi, Y. Elovici, Ngai-Man Cheung, W. Ng","doi":"10.1109/FSKD.2017.8393092","DOIUrl":null,"url":null,"abstract":"Hidden Markov Models (HMM) are probabilistic models that can be used for forecasting time series data. It has seen success in various domains like finance [1-5], bioinformatics [6-8], healthcare [9-11], agriculture [12-14], artificial intelligence[15-17]. However, the use of HMM in cyber security found to date is numbered. We believe the properties of HMM being predictive, probabilistic, and its ability to model different naturally occurring states form a good basis to model cyber security data. It is hence the motivation of this work to provide the initial results of our attempts to predict security attacks using HMM. A large network datasets representing cyber security attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides the weight of each attribute and forms a scoring system by annotating the log history. We applied HMM to distinguish between a cyber security attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally use HMM state-based approach. By doing so, our results are very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analyst intuition based Hidden Markov Model on high speed, temporal cyber security big data\",\"authors\":\"Teoh Teik Toe, Y. Nguwi, Y. Elovici, Ngai-Man Cheung, W. Ng\",\"doi\":\"10.1109/FSKD.2017.8393092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden Markov Models (HMM) are probabilistic models that can be used for forecasting time series data. It has seen success in various domains like finance [1-5], bioinformatics [6-8], healthcare [9-11], agriculture [12-14], artificial intelligence[15-17]. However, the use of HMM in cyber security found to date is numbered. We believe the properties of HMM being predictive, probabilistic, and its ability to model different naturally occurring states form a good basis to model cyber security data. It is hence the motivation of this work to provide the initial results of our attempts to predict security attacks using HMM. A large network datasets representing cyber security attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides the weight of each attribute and forms a scoring system by annotating the log history. We applied HMM to distinguish between a cyber security attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally use HMM state-based approach. By doing so, our results are very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection.\",\"PeriodicalId\":236093,\"journal\":{\"name\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2017.8393092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyst intuition based Hidden Markov Model on high speed, temporal cyber security big data
Hidden Markov Models (HMM) are probabilistic models that can be used for forecasting time series data. It has seen success in various domains like finance [1-5], bioinformatics [6-8], healthcare [9-11], agriculture [12-14], artificial intelligence[15-17]. However, the use of HMM in cyber security found to date is numbered. We believe the properties of HMM being predictive, probabilistic, and its ability to model different naturally occurring states form a good basis to model cyber security data. It is hence the motivation of this work to provide the initial results of our attempts to predict security attacks using HMM. A large network datasets representing cyber security attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides the weight of each attribute and forms a scoring system by annotating the log history. We applied HMM to distinguish between a cyber security attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally use HMM state-based approach. By doing so, our results are very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection.