一个简单的词汇替换词嵌入模型

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1501
Oren Melamud, Omer Levy, Ido Dagan
{"title":"一个简单的词汇替换词嵌入模型","authors":"Oren Melamud, Omer Levy, Ido Dagan","doi":"10.3115/v1/W15-1501","DOIUrl":null,"url":null,"abstract":"The lexical substitution task requires identifying meaning-preserving substitutes for a target word instance in a given sentential context. Since its introduction in SemEval-2007, various models addressed this challenge, mostly in an unsupervised setting. In this work we propose a simple model for lexical substitution, which is based on the popular skip-gram word embedding model. The novelty of our approach is in leveraging explicitly the context embeddings generated within the skip-gram model, which were so far considered only as an internal component of the learning process. Our model is efficient, very simple to implement, and at the same time achieves state-ofthe-art results on lexical substitution tasks in an unsupervised setting.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":"{\"title\":\"A Simple Word Embedding Model for Lexical Substitution\",\"authors\":\"Oren Melamud, Omer Levy, Ido Dagan\",\"doi\":\"10.3115/v1/W15-1501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lexical substitution task requires identifying meaning-preserving substitutes for a target word instance in a given sentential context. Since its introduction in SemEval-2007, various models addressed this challenge, mostly in an unsupervised setting. In this work we propose a simple model for lexical substitution, which is based on the popular skip-gram word embedding model. The novelty of our approach is in leveraging explicitly the context embeddings generated within the skip-gram model, which were so far considered only as an internal component of the learning process. Our model is efficient, very simple to implement, and at the same time achieves state-ofthe-art results on lexical substitution tasks in an unsupervised setting.\",\"PeriodicalId\":299646,\"journal\":{\"name\":\"VS@HLT-NAACL\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VS@HLT-NAACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W15-1501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

摘要

词汇替换任务需要在给定的句子上下文中为目标单词实例识别保留意义的替代品。自SemEval-2007中引入以来,各种模型解决了这一挑战,主要是在无监督的环境中。在这项工作中,我们提出了一个简单的词汇替换模型,该模型基于流行的skip-gram词嵌入模型。我们方法的新颖之处在于明确地利用了skip-gram模型中生成的上下文嵌入,到目前为止,上下文嵌入只被认为是学习过程的内部组成部分。我们的模型非常高效,实现起来非常简单,同时在无监督设置下的词汇替换任务上实现了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Word Embedding Model for Lexical Substitution
The lexical substitution task requires identifying meaning-preserving substitutes for a target word instance in a given sentential context. Since its introduction in SemEval-2007, various models addressed this challenge, mostly in an unsupervised setting. In this work we propose a simple model for lexical substitution, which is based on the popular skip-gram word embedding model. The novelty of our approach is in leveraging explicitly the context embeddings generated within the skip-gram model, which were so far considered only as an internal component of the learning process. Our model is efficient, very simple to implement, and at the same time achieves state-ofthe-art results on lexical substitution tasks in an unsupervised setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信