{"title":"反双罗马统治图","authors":"Wilma Laveena D' Souza, V. Chaitra, M. Kumara","doi":"10.1142/s1793830922501440","DOIUrl":null,"url":null,"abstract":"For a graph [Formula: see text], a double Roman dominating function (DRDF) is a function [Formula: see text] such that each vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices labeled [Formula: see text] or one vertex labeled [Formula: see text] and each vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of [Formula: see text] is the sum of all labelings [Formula: see text] and is denoted by [Formula: see text]. If [Formula: see text] is a DRDF on [Formula: see text] with minimum weight [Formula: see text], then its inverse double Roman dominating function (IDRDF) [Formula: see text] is a DRDF on [Formula: see text], such that [Formula: see text], where [Formula: see text]. The inverse double Roman domination number (IDRDN) of [Formula: see text], denoted by [Formula: see text] is the minimum weight of such a function. We introduce this new type of inverse dominating function, obtain some bounds for the IDRDN of [Formula: see text]. We characterize the graphs having [Formula: see text] and the highest. We also present an approach for constructing graphs with the desired IDRDN.","PeriodicalId":342835,"journal":{"name":"Discret. Math. Algorithms Appl.","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse double Roman domination in graphs\",\"authors\":\"Wilma Laveena D' Souza, V. Chaitra, M. Kumara\",\"doi\":\"10.1142/s1793830922501440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph [Formula: see text], a double Roman dominating function (DRDF) is a function [Formula: see text] such that each vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices labeled [Formula: see text] or one vertex labeled [Formula: see text] and each vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of [Formula: see text] is the sum of all labelings [Formula: see text] and is denoted by [Formula: see text]. If [Formula: see text] is a DRDF on [Formula: see text] with minimum weight [Formula: see text], then its inverse double Roman dominating function (IDRDF) [Formula: see text] is a DRDF on [Formula: see text], such that [Formula: see text], where [Formula: see text]. The inverse double Roman domination number (IDRDN) of [Formula: see text], denoted by [Formula: see text] is the minimum weight of such a function. We introduce this new type of inverse dominating function, obtain some bounds for the IDRDN of [Formula: see text]. We characterize the graphs having [Formula: see text] and the highest. We also present an approach for constructing graphs with the desired IDRDN.\",\"PeriodicalId\":342835,\"journal\":{\"name\":\"Discret. Math. Algorithms Appl.\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Algorithms Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830922501440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Algorithms Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830922501440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于一个图[公式:见文],双罗马支配函数(DRDF)是这样一个函数[公式:见文],使得每个顶点[公式:见文]与至少两个标记为[公式:见文]的顶点[公式:见文]或一个标记为[公式:见文]的顶点[公式:见文]相邻,并且每个顶点[公式:见文]与[公式:见文]至少相邻一个顶点[公式:见文]。[公式:见文]的权重是所有标签[公式:见文]的和,用[公式:见文]表示。如果[Formula: see text]是[Formula: see text]上具有最小权值的DRDF [Formula: see text],那么它的逆双罗马支配函数(IDRDF) [Formula: see text]是[Formula: see text]上的DRDF,使得[Formula: see text],其中[Formula: see text]。[Formula: see text]的逆双罗马支配数(IDRDN),用[Formula: see text]表示为该函数的最小权值。我们引入了这类新的逆控制函数,得到了[公式:见文]的IDRDN的一些界。我们用[公式:见文本]和最高来描述图形。我们还提出了一种用期望的IDRDN构造图的方法。
For a graph [Formula: see text], a double Roman dominating function (DRDF) is a function [Formula: see text] such that each vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices labeled [Formula: see text] or one vertex labeled [Formula: see text] and each vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of [Formula: see text] is the sum of all labelings [Formula: see text] and is denoted by [Formula: see text]. If [Formula: see text] is a DRDF on [Formula: see text] with minimum weight [Formula: see text], then its inverse double Roman dominating function (IDRDF) [Formula: see text] is a DRDF on [Formula: see text], such that [Formula: see text], where [Formula: see text]. The inverse double Roman domination number (IDRDN) of [Formula: see text], denoted by [Formula: see text] is the minimum weight of such a function. We introduce this new type of inverse dominating function, obtain some bounds for the IDRDN of [Formula: see text]. We characterize the graphs having [Formula: see text] and the highest. We also present an approach for constructing graphs with the desired IDRDN.