{"title":"多频带am - fm分解的分流网络","authors":"R. Baxter, T. Quatieri","doi":"10.1109/ASPAA.1999.810891","DOIUrl":null,"url":null,"abstract":"We describe a transduction-based, neurodynamic approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. We show that the transduction approach can be realized as a bank of constant-Q bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of robust AM-FM estimation. Our model is consistent with previous psychophysical experiments that indicate AM and FM components of acoustic signals may be transformed into a common neural code in the brain stem via FM-to-AM transduction (Saberi and Hafter 1995). The shunting network for AM-FM decomposition is followed by a contrast enhancement shunting network that provides a mechanism for robustly selecting auditory filter channels as the FM of an input stimulus sweeps across the multiple filters. The AM-FM output of the shunting networks may provide a robust feature representation and is being considered for applications in signal recognition and multi-component decomposition problems.","PeriodicalId":229733,"journal":{"name":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Shunting networks for multi-band AM-FM-decomposition\",\"authors\":\"R. Baxter, T. Quatieri\",\"doi\":\"10.1109/ASPAA.1999.810891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a transduction-based, neurodynamic approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. We show that the transduction approach can be realized as a bank of constant-Q bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of robust AM-FM estimation. Our model is consistent with previous psychophysical experiments that indicate AM and FM components of acoustic signals may be transformed into a common neural code in the brain stem via FM-to-AM transduction (Saberi and Hafter 1995). The shunting network for AM-FM decomposition is followed by a contrast enhancement shunting network that provides a mechanism for robustly selecting auditory filter channels as the FM of an input stimulus sweeps across the multiple filters. The AM-FM output of the shunting networks may provide a robust feature representation and is being considered for applications in signal recognition and multi-component decomposition problems.\",\"PeriodicalId\":229733,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPAA.1999.810891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPAA.1999.810891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shunting networks for multi-band AM-FM-decomposition
We describe a transduction-based, neurodynamic approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. We show that the transduction approach can be realized as a bank of constant-Q bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of robust AM-FM estimation. Our model is consistent with previous psychophysical experiments that indicate AM and FM components of acoustic signals may be transformed into a common neural code in the brain stem via FM-to-AM transduction (Saberi and Hafter 1995). The shunting network for AM-FM decomposition is followed by a contrast enhancement shunting network that provides a mechanism for robustly selecting auditory filter channels as the FM of an input stimulus sweeps across the multiple filters. The AM-FM output of the shunting networks may provide a robust feature representation and is being considered for applications in signal recognition and multi-component decomposition problems.