使用上下文语音识别的谷歌助手关键字定位

A. Michaely, Xuedong Zhang, Gabor Simko, Carolina Parada, Petar S. Aleksic
{"title":"使用上下文语音识别的谷歌助手关键字定位","authors":"A. Michaely, Xuedong Zhang, Gabor Simko, Carolina Parada, Petar S. Aleksic","doi":"10.1109/ASRU.2017.8268946","DOIUrl":null,"url":null,"abstract":"We present a novel keyword spotting (KWS) system that uses contextual automatic speech recognition (ASR). For voice-activated devices, it is common that a KWS system is run on the device in order to quickly detect a trigger phrase (e.g. “Ok Google”). After the trigger phrase is detected, the audio corresponding to the voice command that follows is streamed to the server. The audio is transcribed by the server-side ASR system and semantically processed to generate a response which is sent back to the device. Due to limited resources on the device, the device KWS system might introduce false accepts (FA) and false rejects (FR) that can cause an unsatisfactory user experience. We describe a system that uses server-side contextual ASR and trigger phrase non-terminals to improve overall KWS accuracy. We show that this approach can significantly reduce the FA rate (by 89%) while minimally increasing the FR rate (by 0.2%). Furthermore, we show that this system significantly improves the ASR quality, reducing Word Error Rate (WER) (by 10% to 50% relative), and allows the user to speak seamlessly, without pausing between the trigger phrase and the voice command.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Keyword spotting for Google assistant using contextual speech recognition\",\"authors\":\"A. Michaely, Xuedong Zhang, Gabor Simko, Carolina Parada, Petar S. Aleksic\",\"doi\":\"10.1109/ASRU.2017.8268946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel keyword spotting (KWS) system that uses contextual automatic speech recognition (ASR). For voice-activated devices, it is common that a KWS system is run on the device in order to quickly detect a trigger phrase (e.g. “Ok Google”). After the trigger phrase is detected, the audio corresponding to the voice command that follows is streamed to the server. The audio is transcribed by the server-side ASR system and semantically processed to generate a response which is sent back to the device. Due to limited resources on the device, the device KWS system might introduce false accepts (FA) and false rejects (FR) that can cause an unsatisfactory user experience. We describe a system that uses server-side contextual ASR and trigger phrase non-terminals to improve overall KWS accuracy. We show that this approach can significantly reduce the FA rate (by 89%) while minimally increasing the FR rate (by 0.2%). Furthermore, we show that this system significantly improves the ASR quality, reducing Word Error Rate (WER) (by 10% to 50% relative), and allows the user to speak seamlessly, without pausing between the trigger phrase and the voice command.\",\"PeriodicalId\":290868,\"journal\":{\"name\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2017.8268946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

提出了一种基于上下文自动语音识别(ASR)的关键字识别系统。对于声控设备,通常会在设备上运行KWS系统,以便快速检测触发短语(例如“Ok Google”)。检测到触发短语后,将随后的语音命令对应的音频流式传输到服务器。音频由服务器端ASR系统转录,并进行语义处理以生成响应,该响应发送回设备。由于设备上的资源有限,设备KWS系统可能会引入假接受(FA)和假拒绝(FR),从而导致不满意的用户体验。我们描述了一个使用服务器端上下文ASR和触发短语非终端来提高整体KWS准确性的系统。我们发现,这种方法可以显著降低FA率(89%),同时最小限度地增加FR率(0.2%)。此外,我们表明,该系统显著提高了ASR质量,降低了单词错误率(WER)(相对降低了10%到50%),并允许用户无缝地说话,而无需在触发短语和语音命令之间暂停。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keyword spotting for Google assistant using contextual speech recognition
We present a novel keyword spotting (KWS) system that uses contextual automatic speech recognition (ASR). For voice-activated devices, it is common that a KWS system is run on the device in order to quickly detect a trigger phrase (e.g. “Ok Google”). After the trigger phrase is detected, the audio corresponding to the voice command that follows is streamed to the server. The audio is transcribed by the server-side ASR system and semantically processed to generate a response which is sent back to the device. Due to limited resources on the device, the device KWS system might introduce false accepts (FA) and false rejects (FR) that can cause an unsatisfactory user experience. We describe a system that uses server-side contextual ASR and trigger phrase non-terminals to improve overall KWS accuracy. We show that this approach can significantly reduce the FA rate (by 89%) while minimally increasing the FR rate (by 0.2%). Furthermore, we show that this system significantly improves the ASR quality, reducing Word Error Rate (WER) (by 10% to 50% relative), and allows the user to speak seamlessly, without pausing between the trigger phrase and the voice command.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信