利用时间序列数据推断基因调控网络的培养卡尔曼滤波方法

Amina Noor, E. Serpedin, M. Nounou, H. Nounou
{"title":"利用时间序列数据推断基因调控网络的培养卡尔曼滤波方法","authors":"Amina Noor, E. Serpedin, M. Nounou, H. Nounou","doi":"10.1109/GENSiPS.2011.6169432","DOIUrl":null,"url":null,"abstract":"A novel technique for the inference of gene regulatory networks is proposed which utilizes cubature Kalman filter (CKF). The gene network is modeled using the state-space approach. A non-linear model for the evolution of gene expression is considered and the microarray data is assumed to follow a linear Gaussian model. CKF is used to estimate the hidden states as well as the unknown static parameters of the model. These parameters provide an insight into the regulatory relations among the genes. The proposed algorithm delievers superior performance than the linearization based extended Kalman filter (EKF) for synthetic as well as real world biological data.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A cubature Kalman filter approach for inferring gene regulatory networks using time series data\",\"authors\":\"Amina Noor, E. Serpedin, M. Nounou, H. Nounou\",\"doi\":\"10.1109/GENSiPS.2011.6169432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel technique for the inference of gene regulatory networks is proposed which utilizes cubature Kalman filter (CKF). The gene network is modeled using the state-space approach. A non-linear model for the evolution of gene expression is considered and the microarray data is assumed to follow a linear Gaussian model. CKF is used to estimate the hidden states as well as the unknown static parameters of the model. These parameters provide an insight into the regulatory relations among the genes. The proposed algorithm delievers superior performance than the linearization based extended Kalman filter (EKF) for synthetic as well as real world biological data.\",\"PeriodicalId\":181666,\"journal\":{\"name\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSiPS.2011.6169432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用培养卡尔曼滤波(CKF)进行基因调控网络推理的新方法。采用状态空间方法对基因网络进行建模。考虑了基因表达进化的非线性模型,并假设微阵列数据遵循线性高斯模型。CKF用于估计模型的隐状态和未知静态参数。这些参数提供了一个洞察基因之间的调控关系。该算法对于合成和真实世界的生物数据都比基于线性化的扩展卡尔曼滤波(EKF)具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cubature Kalman filter approach for inferring gene regulatory networks using time series data
A novel technique for the inference of gene regulatory networks is proposed which utilizes cubature Kalman filter (CKF). The gene network is modeled using the state-space approach. A non-linear model for the evolution of gene expression is considered and the microarray data is assumed to follow a linear Gaussian model. CKF is used to estimate the hidden states as well as the unknown static parameters of the model. These parameters provide an insight into the regulatory relations among the genes. The proposed algorithm delievers superior performance than the linearization based extended Kalman filter (EKF) for synthetic as well as real world biological data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信