热处理对激光粉末床熔合Inconel 939组织性能的影响

E. Nandha Kumar, K. Athira, S. Chatterjee, D. Srinivasan
{"title":"热处理对激光粉末床熔合Inconel 939组织性能的影响","authors":"E. Nandha Kumar, K. Athira, S. Chatterjee, D. Srinivasan","doi":"10.1115/iam2022-93945","DOIUrl":null,"url":null,"abstract":"\n Additive manufacturing of high gamma prime (γ’) Nickel-based superalloys are challenging due to their hot cracking tendency. This study comprises an understanding of microstructural evolution and mechanical properties of Inconel 939 (IN939) alloy processed via laser powder bed fusion (LPBF). The as-printed samples comprised of columnar grains along the build direction with a pronounced <100> texture resulting in ∼17% lower elastic modulus along the build direction as compared to the builds in transverse orientation. The microstructure consists of cellular and columnar dendrites with segregation of Nb, Ta and Si in the inter-dendritic regions (decorating the cell boundaries). Occurrence of fine (< 50 nm) intra granular carbides in the as printed condition is a unique feature of this microstructure. Heat treatment resulted in dissolution of the dendritic microstructure with precipitation of semi-coherent γ’ (Ni3(Al,Ti)) precipitates (150–200 nm) homogeneously from the matrix resulting in ∼16% enhanced yield strength. The <100> texture is retained even after the solution and aging heat treatment indicating thermal stability of this structure.","PeriodicalId":184278,"journal":{"name":"2022 International Additive Manufacturing Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Heat Treatment on Structure and Properties of Laser Powder Bed Fusion Inconel 939\",\"authors\":\"E. Nandha Kumar, K. Athira, S. Chatterjee, D. Srinivasan\",\"doi\":\"10.1115/iam2022-93945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Additive manufacturing of high gamma prime (γ’) Nickel-based superalloys are challenging due to their hot cracking tendency. This study comprises an understanding of microstructural evolution and mechanical properties of Inconel 939 (IN939) alloy processed via laser powder bed fusion (LPBF). The as-printed samples comprised of columnar grains along the build direction with a pronounced <100> texture resulting in ∼17% lower elastic modulus along the build direction as compared to the builds in transverse orientation. The microstructure consists of cellular and columnar dendrites with segregation of Nb, Ta and Si in the inter-dendritic regions (decorating the cell boundaries). Occurrence of fine (< 50 nm) intra granular carbides in the as printed condition is a unique feature of this microstructure. Heat treatment resulted in dissolution of the dendritic microstructure with precipitation of semi-coherent γ’ (Ni3(Al,Ti)) precipitates (150–200 nm) homogeneously from the matrix resulting in ∼16% enhanced yield strength. The <100> texture is retained even after the solution and aging heat treatment indicating thermal stability of this structure.\",\"PeriodicalId\":184278,\"journal\":{\"name\":\"2022 International Additive Manufacturing Conference\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Additive Manufacturing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/iam2022-93945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Additive Manufacturing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iam2022-93945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高γ素数(γ′)镍基高温合金具有热裂倾向,因此增材制造具有挑战性。本研究包括对激光粉末床熔炼(LPBF)加工的Inconel 939 (IN939)合金的显微组织演变和力学性能的了解。打印样品由沿构建方向的柱状颗粒组成,具有明显的纹理,与横向构建相比,沿构建方向的弹性模量降低了约17%。显微结构由胞状和柱状枝晶组成,枝晶间有Nb、Ta和Si的偏析(装饰细胞边界)。在印刷条件下,颗粒内细小(< 50 nm)碳化物的出现是这种微观结构的独特特征。热处理导致枝晶组织溶解,从基体中均匀析出半共格γ′(Ni3(Al,Ti))相(150-200 nm),使屈服强度提高约16%。即使经过固溶和时效热处理,织构仍保持不变,表明该组织具有热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Heat Treatment on Structure and Properties of Laser Powder Bed Fusion Inconel 939
Additive manufacturing of high gamma prime (γ’) Nickel-based superalloys are challenging due to their hot cracking tendency. This study comprises an understanding of microstructural evolution and mechanical properties of Inconel 939 (IN939) alloy processed via laser powder bed fusion (LPBF). The as-printed samples comprised of columnar grains along the build direction with a pronounced <100> texture resulting in ∼17% lower elastic modulus along the build direction as compared to the builds in transverse orientation. The microstructure consists of cellular and columnar dendrites with segregation of Nb, Ta and Si in the inter-dendritic regions (decorating the cell boundaries). Occurrence of fine (< 50 nm) intra granular carbides in the as printed condition is a unique feature of this microstructure. Heat treatment resulted in dissolution of the dendritic microstructure with precipitation of semi-coherent γ’ (Ni3(Al,Ti)) precipitates (150–200 nm) homogeneously from the matrix resulting in ∼16% enhanced yield strength. The <100> texture is retained even after the solution and aging heat treatment indicating thermal stability of this structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信