线性函数可恢复性下的高斯数据隐私

Ajaykrishnan Nageswaran
{"title":"线性函数可恢复性下的高斯数据隐私","authors":"Ajaykrishnan Nageswaran","doi":"10.1109/ISIT50566.2022.9834525","DOIUrl":null,"url":null,"abstract":"A user’s data is represented by a Gaussian random variable. Given a linear function of the data, a querier is required to recover, with at least a prescribed accuracy level, the function value based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Recoverability and privacy are both measured by ℓ2-distance criteria. An exact characterization is provided of maximum user data privacy under the recoverability condition. An explicit achievability scheme for the user is given and its privacy compared with a converse upper bound.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Data Privacy Under Linear Function Recoverability\",\"authors\":\"Ajaykrishnan Nageswaran\",\"doi\":\"10.1109/ISIT50566.2022.9834525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A user’s data is represented by a Gaussian random variable. Given a linear function of the data, a querier is required to recover, with at least a prescribed accuracy level, the function value based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Recoverability and privacy are both measured by ℓ2-distance criteria. An exact characterization is provided of maximum user data privacy under the recoverability condition. An explicit achievability scheme for the user is given and its privacy compared with a converse upper bound.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用户数据由高斯随机变量表示。给定数据的线性函数,查询程序需要根据用户提供的查询响应,至少以规定的精度级别恢复函数值。用户根据可恢复性要求设计查询响应,从而最大限度地保护查询者的数据隐私。可恢复性和隐私性都是通过l2距离标准来测量的。给出了可恢复性条件下最大用户数据隐私的精确表征。给出了用户的显式可达性方案,并将其隐私性与逆上界进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Data Privacy Under Linear Function Recoverability
A user’s data is represented by a Gaussian random variable. Given a linear function of the data, a querier is required to recover, with at least a prescribed accuracy level, the function value based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Recoverability and privacy are both measured by ℓ2-distance criteria. An exact characterization is provided of maximum user data privacy under the recoverability condition. An explicit achievability scheme for the user is given and its privacy compared with a converse upper bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信