基于弹性模型的ssi -2卫星图像正校正

O. Kravchenko, M. Lavrenyuk, N. Kussul
{"title":"基于弹性模型的ssi -2卫星图像正校正","authors":"O. Kravchenko, M. Lavrenyuk, N. Kussul","doi":"10.1109/IGARSS.2014.6946925","DOIUrl":null,"url":null,"abstract":"In this paper, a new method for automatic identification of ground control points (GCPs) on optical remote sensing images is presented. An elastic Radial Basis Function (RBF) neural network based model for nonlinear coordinate transformation and image rectification is proposed. The new method can be used to produce dense fields of about thousands of GCPs per image to train highly deformable transformation models. As a result, an accuracy improvement of order of 4 in comparison with the Automated Precise Orthorectification Package (AROP) can be obtained. The proposed method is applied for the Ukrainian remote sensing satellite Sich-2. The obtained average RMSE error by the new method for Sich-2 images is estimated at 17.8 m.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Orthorectification of Sich-2 satellite images using elastic models\",\"authors\":\"O. Kravchenko, M. Lavrenyuk, N. Kussul\",\"doi\":\"10.1109/IGARSS.2014.6946925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method for automatic identification of ground control points (GCPs) on optical remote sensing images is presented. An elastic Radial Basis Function (RBF) neural network based model for nonlinear coordinate transformation and image rectification is proposed. The new method can be used to produce dense fields of about thousands of GCPs per image to train highly deformable transformation models. As a result, an accuracy improvement of order of 4 in comparison with the Automated Precise Orthorectification Package (AROP) can be obtained. The proposed method is applied for the Ukrainian remote sensing satellite Sich-2. The obtained average RMSE error by the new method for Sich-2 images is estimated at 17.8 m.\",\"PeriodicalId\":385645,\"journal\":{\"name\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2014.6946925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6946925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于光学遥感影像的地面控制点自动识别新方法。提出了一种基于弹性径向基函数(RBF)神经网络的非线性坐标变换和图像校正模型。新方法可用于生成每张图像约数千个gcp的密集场,以训练高度可变形的转换模型。结果表明,与自动精确矫正包(AROP)相比,精度提高了4个数量级。该方法应用于乌克兰Sich-2遥感卫星。新方法得到的sch -2图像的平均RMSE误差估计为17.8 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthorectification of Sich-2 satellite images using elastic models
In this paper, a new method for automatic identification of ground control points (GCPs) on optical remote sensing images is presented. An elastic Radial Basis Function (RBF) neural network based model for nonlinear coordinate transformation and image rectification is proposed. The new method can be used to produce dense fields of about thousands of GCPs per image to train highly deformable transformation models. As a result, an accuracy improvement of order of 4 in comparison with the Automated Precise Orthorectification Package (AROP) can be obtained. The proposed method is applied for the Ukrainian remote sensing satellite Sich-2. The obtained average RMSE error by the new method for Sich-2 images is estimated at 17.8 m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信