基于识别的在线阿拉伯笔迹分割算法

Khaled Daifallah, N. Zarka, H. Jamous
{"title":"基于识别的在线阿拉伯笔迹分割算法","authors":"Khaled Daifallah, N. Zarka, H. Jamous","doi":"10.1109/ICDAR.2009.169","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an on-line Arabic handwritten recognition system based on new stroke segmentation algorithm. The proposed algorithm uses an over segmentation method that has the advantage of giving all correct segments at least. It is based on arbitrary segmentation followed by segmentation enhancement, consecutive joints connection and finally segmentation point locating. The proposed system gives an excellent recognition rate up to 97% and 92% for words and letter recognition.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Recognition-Based Segmentation Algorithm for On-Line Arabic Handwriting\",\"authors\":\"Khaled Daifallah, N. Zarka, H. Jamous\",\"doi\":\"10.1109/ICDAR.2009.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an on-line Arabic handwritten recognition system based on new stroke segmentation algorithm. The proposed algorithm uses an over segmentation method that has the advantage of giving all correct segments at least. It is based on arbitrary segmentation followed by segmentation enhancement, consecutive joints connection and finally segmentation point locating. The proposed system gives an excellent recognition rate up to 97% and 92% for words and letter recognition.\",\"PeriodicalId\":433762,\"journal\":{\"name\":\"2009 10th International Conference on Document Analysis and Recognition\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2009.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

本文介绍了一种基于新的笔划分割算法的在线阿拉伯文手写识别系统。该算法使用了一种超分割方法,其优点是至少给出了所有正确的片段。该方法是在任意分割的基础上,进行分割增强,连续连接,最后定位分割点。该系统对单词和字母的识别率分别达到97%和92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition-Based Segmentation Algorithm for On-Line Arabic Handwriting
In this paper, we introduce an on-line Arabic handwritten recognition system based on new stroke segmentation algorithm. The proposed algorithm uses an over segmentation method that has the advantage of giving all correct segments at least. It is based on arbitrary segmentation followed by segmentation enhancement, consecutive joints connection and finally segmentation point locating. The proposed system gives an excellent recognition rate up to 97% and 92% for words and letter recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信