在6天内重建世界

Jared Heinly, Johannes L. Schönberger, Enrique Dunn, Jan-Michael Frahm
{"title":"在6天内重建世界","authors":"Jared Heinly, Johannes L. Schönberger, Enrique Dunn, Jan-Michael Frahm","doi":"10.1109/CVPR.2015.7298949","DOIUrl":null,"url":null,"abstract":"We propose a novel, large-scale, structure-from-motion framework that advances the state of the art in data scalability from city-scale modeling (millions of images) to world-scale modeling (several tens of millions of images) using just a single computer. The main enabling technology is the use of a streaming-based framework for connected component discovery. Moreover, our system employs an adaptive, online, iconic image clustering approach based on an augmented bag-of-words representation, in order to balance the goals of registration, comprehensiveness, and data compactness. We demonstrate our proposal by operating on a recent publicly available 100 million image crowd-sourced photo collection containing images geographically distributed throughout the entire world. Results illustrate that our streaming-based approach does not compromise model completeness, but achieves unprecedented levels of efficiency and scalability.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"Reconstructing the world* in six days\",\"authors\":\"Jared Heinly, Johannes L. Schönberger, Enrique Dunn, Jan-Michael Frahm\",\"doi\":\"10.1109/CVPR.2015.7298949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel, large-scale, structure-from-motion framework that advances the state of the art in data scalability from city-scale modeling (millions of images) to world-scale modeling (several tens of millions of images) using just a single computer. The main enabling technology is the use of a streaming-based framework for connected component discovery. Moreover, our system employs an adaptive, online, iconic image clustering approach based on an augmented bag-of-words representation, in order to balance the goals of registration, comprehensiveness, and data compactness. We demonstrate our proposal by operating on a recent publicly available 100 million image crowd-sourced photo collection containing images geographically distributed throughout the entire world. Results illustrate that our streaming-based approach does not compromise model completeness, but achieves unprecedented levels of efficiency and scalability.\",\"PeriodicalId\":444472,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2015.7298949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

摘要

我们提出了一种新颖的、大规模的、基于运动的结构框架,它在数据可扩展性方面推进了最先进的技术,从城市规模的建模(数百万张图像)到世界规模的建模(数千万张图像),仅使用一台计算机。主要的支持技术是使用基于流的框架来发现连接的组件。此外,我们的系统采用了一种基于增强词袋表示的自适应在线图像聚类方法,以平衡配准、全面性和数据紧凑性的目标。我们通过对最近公开的1亿张图片进行操作来展示我们的建议,这些图片来自于全球各地的地理位置。结果表明,我们基于流的方法不会损害模型的完整性,但达到了前所未有的效率和可扩展性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstructing the world* in six days
We propose a novel, large-scale, structure-from-motion framework that advances the state of the art in data scalability from city-scale modeling (millions of images) to world-scale modeling (several tens of millions of images) using just a single computer. The main enabling technology is the use of a streaming-based framework for connected component discovery. Moreover, our system employs an adaptive, online, iconic image clustering approach based on an augmented bag-of-words representation, in order to balance the goals of registration, comprehensiveness, and data compactness. We demonstrate our proposal by operating on a recent publicly available 100 million image crowd-sourced photo collection containing images geographically distributed throughout the entire world. Results illustrate that our streaming-based approach does not compromise model completeness, but achieves unprecedented levels of efficiency and scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信