基于卷积神经网络的淋巴结自动分类

Ason Uthatham, Nutcha Yodrabum, Chanya Sinmaroeng, Taravichet Titijaroonroj
{"title":"基于卷积神经网络的淋巴结自动分类","authors":"Ason Uthatham, Nutcha Yodrabum, Chanya Sinmaroeng, Taravichet Titijaroonroj","doi":"10.1109/ICITEE56407.2022.9954045","DOIUrl":null,"url":null,"abstract":"Manual lymph node classification is a tedious and time-consuming task. It requires a histopathologist to discriminate a lymph node from other look-alike kinds of tissues. The lymph node is easily misunderstood with other tissues because its shape and color might be similar to the others tissue around it. To automate this task, we present an automatic lymph node classification with convolutional neural network (CNN). In addition, we compared eight existing CNNs to ensure that we discover the best architecture for discriminating lymph node. DenseNet architecture provided the highest performance among AlexNet, VGG, GoogLeNet, ResNet, SqueezeNet, MobileNet, and EfficientNet, the highest accuracy at 0.994 and an F1score of 0.996. DenseNet accomplished the highest performance from two advantages: (i) fewer parameters and (ii) Dense connectivity.","PeriodicalId":246279,"journal":{"name":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Lymph Node Classification with Convolutional Neural Network\",\"authors\":\"Ason Uthatham, Nutcha Yodrabum, Chanya Sinmaroeng, Taravichet Titijaroonroj\",\"doi\":\"10.1109/ICITEE56407.2022.9954045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manual lymph node classification is a tedious and time-consuming task. It requires a histopathologist to discriminate a lymph node from other look-alike kinds of tissues. The lymph node is easily misunderstood with other tissues because its shape and color might be similar to the others tissue around it. To automate this task, we present an automatic lymph node classification with convolutional neural network (CNN). In addition, we compared eight existing CNNs to ensure that we discover the best architecture for discriminating lymph node. DenseNet architecture provided the highest performance among AlexNet, VGG, GoogLeNet, ResNet, SqueezeNet, MobileNet, and EfficientNet, the highest accuracy at 0.994 and an F1score of 0.996. DenseNet accomplished the highest performance from two advantages: (i) fewer parameters and (ii) Dense connectivity.\",\"PeriodicalId\":246279,\"journal\":{\"name\":\"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEE56407.2022.9954045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEE56407.2022.9954045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

手工淋巴结分类是一项繁琐而耗时的任务。它需要组织病理学家将淋巴结与其他类似的组织区分开来。淋巴结很容易被误认为是其他组织,因为它的形状和颜色可能与周围的其他组织相似。为了自动化这项任务,我们提出了一个卷积神经网络(CNN)的自动淋巴结分类。此外,我们比较了八种现有的cnn,以确保我们发现了区分淋巴结的最佳架构。在AlexNet、VGG、GoogLeNet、ResNet、SqueezeNet、MobileNet和EfficientNet中,DenseNet架构的性能最高,准确率为0.994,F1score为0.996。DenseNet通过两个优势实现了最高性能:(i)更少的参数和(ii)密集的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Lymph Node Classification with Convolutional Neural Network
Manual lymph node classification is a tedious and time-consuming task. It requires a histopathologist to discriminate a lymph node from other look-alike kinds of tissues. The lymph node is easily misunderstood with other tissues because its shape and color might be similar to the others tissue around it. To automate this task, we present an automatic lymph node classification with convolutional neural network (CNN). In addition, we compared eight existing CNNs to ensure that we discover the best architecture for discriminating lymph node. DenseNet architecture provided the highest performance among AlexNet, VGG, GoogLeNet, ResNet, SqueezeNet, MobileNet, and EfficientNet, the highest accuracy at 0.994 and an F1score of 0.996. DenseNet accomplished the highest performance from two advantages: (i) fewer parameters and (ii) Dense connectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信