基于地理空间数据信号处理的无先验热点提取方法

Vaibhav Kulkarni, A. Moro, B. Chapuis, B. Garbinato
{"title":"基于地理空间数据信号处理的无先验热点提取方法","authors":"Vaibhav Kulkarni, A. Moro, B. Chapuis, B. Garbinato","doi":"10.1145/3139958.3140002","DOIUrl":null,"url":null,"abstract":"The proliferation of mobile devices equipped with internet connectivity and global positioning functionality (GPS) has resulted in the generation of large volumes of spatiotemporal data. This has led to the rapid evolution of location-based services. The anticipatory nature of these services, demand exploitation of a broader range of user information for service personalization. Determining the users' places of interest, i.e. hotspots is critical to understand their behaviors and preferences. Existing techniques to detect hotspots rely on a set of a-priori determined parameters that are either dataset dependent or derived without any empirical basis. This leads to biased results and inaccuracies in estimating the total number of hotspots belonging to a user, their shape and the average dwelling time. In this paper, we propose a parameter-less technique for extracting hotspots from spatiotemporal trajectories without any a-priori assumptions. We eliminate parameter dependence by treating trajectories as spatiotemporal signals and rely on signal processing algorithms to derive hotspots. We experimentally show that, our technique does not necessitate any spatiotemporal or behavior dependent bounds, which makes it suitable to extract hotspots from a larger variety of datasets and across users having disparate mobility behaviors. Our evaluation results on a real world dataset, show accuracy rates exceeding 80% and outperforms traditional clustering techniques used for hotspot detection.","PeriodicalId":270649,"journal":{"name":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Extracting Hotspots without A-priori by Enabling Signal Processing over Geospatial Data\",\"authors\":\"Vaibhav Kulkarni, A. Moro, B. Chapuis, B. Garbinato\",\"doi\":\"10.1145/3139958.3140002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of mobile devices equipped with internet connectivity and global positioning functionality (GPS) has resulted in the generation of large volumes of spatiotemporal data. This has led to the rapid evolution of location-based services. The anticipatory nature of these services, demand exploitation of a broader range of user information for service personalization. Determining the users' places of interest, i.e. hotspots is critical to understand their behaviors and preferences. Existing techniques to detect hotspots rely on a set of a-priori determined parameters that are either dataset dependent or derived without any empirical basis. This leads to biased results and inaccuracies in estimating the total number of hotspots belonging to a user, their shape and the average dwelling time. In this paper, we propose a parameter-less technique for extracting hotspots from spatiotemporal trajectories without any a-priori assumptions. We eliminate parameter dependence by treating trajectories as spatiotemporal signals and rely on signal processing algorithms to derive hotspots. We experimentally show that, our technique does not necessitate any spatiotemporal or behavior dependent bounds, which makes it suitable to extract hotspots from a larger variety of datasets and across users having disparate mobility behaviors. Our evaluation results on a real world dataset, show accuracy rates exceeding 80% and outperforms traditional clustering techniques used for hotspot detection.\",\"PeriodicalId\":270649,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139958.3140002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139958.3140002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

配备互联网连接和全球定位功能(GPS)的移动设备的激增导致了大量时空数据的产生。这导致了基于位置的服务的快速发展。这些服务的预见性要求利用更广泛的用户信息来实现个性化服务。确定用户的兴趣点(即热点)对于了解他们的行为和偏好至关重要。现有的热点检测技术依赖于一组先验确定的参数,这些参数要么依赖于数据集,要么在没有任何经验基础的情况下推导出来。这导致在估计属于用户的热点总数、它们的形状和平均停留时间时产生偏差和不准确的结果。在本文中,我们提出了一种从时空轨迹中提取热点的无参数技术,无需任何先验假设。我们通过将轨迹视为时空信号来消除参数依赖性,并依靠信号处理算法来推导热点。我们的实验表明,我们的技术不需要任何时空或行为依赖的边界,这使得它适用于从更多种类的数据集和具有不同移动行为的用户中提取热点。我们在真实世界数据集上的评估结果显示,准确率超过80%,优于用于热点检测的传统聚类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting Hotspots without A-priori by Enabling Signal Processing over Geospatial Data
The proliferation of mobile devices equipped with internet connectivity and global positioning functionality (GPS) has resulted in the generation of large volumes of spatiotemporal data. This has led to the rapid evolution of location-based services. The anticipatory nature of these services, demand exploitation of a broader range of user information for service personalization. Determining the users' places of interest, i.e. hotspots is critical to understand their behaviors and preferences. Existing techniques to detect hotspots rely on a set of a-priori determined parameters that are either dataset dependent or derived without any empirical basis. This leads to biased results and inaccuracies in estimating the total number of hotspots belonging to a user, their shape and the average dwelling time. In this paper, we propose a parameter-less technique for extracting hotspots from spatiotemporal trajectories without any a-priori assumptions. We eliminate parameter dependence by treating trajectories as spatiotemporal signals and rely on signal processing algorithms to derive hotspots. We experimentally show that, our technique does not necessitate any spatiotemporal or behavior dependent bounds, which makes it suitable to extract hotspots from a larger variety of datasets and across users having disparate mobility behaviors. Our evaluation results on a real world dataset, show accuracy rates exceeding 80% and outperforms traditional clustering techniques used for hotspot detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信