基于改进的多目标人工蜂群算法求解混合流水车间调度问题

Liang Xu, Jiang Yeming, Huang Ming
{"title":"基于改进的多目标人工蜂群算法求解混合流水车间调度问题","authors":"Liang Xu, Jiang Yeming, Huang Ming","doi":"10.1109/CCIOT.2016.7868300","DOIUrl":null,"url":null,"abstract":"In the model of hybrid flow shop scheduling problem with unrelated parallel machines, the makespan, total weighted earliness/tardiness and total waiting time are established as evaluation index. An algorithm of artificial bee colony based on the method of adaptive neighborhood search is designed. According to the characteristics of the model, initial processing sequence is used as solution vector in order to narrow down feasible solutions. Fitness of populations is distinguished by non-dominated sorting. In the process of iteration, excellent individuals are retained so that the diversity of population distribution is increased. Finally, the method is applied to a simulation example, compared with the traditional multi-objective algorithm. The results obtained demonstrate that the improved ABC algorithm for hybrid flow shop scheduling problem is good effective and diversified.","PeriodicalId":384484,"journal":{"name":"2016 2nd International Conference on Cloud Computing and Internet of Things (CCIOT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Solving hybrid flow-shop scheduling based on improved multi-objective artificial bee colony algorithm\",\"authors\":\"Liang Xu, Jiang Yeming, Huang Ming\",\"doi\":\"10.1109/CCIOT.2016.7868300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the model of hybrid flow shop scheduling problem with unrelated parallel machines, the makespan, total weighted earliness/tardiness and total waiting time are established as evaluation index. An algorithm of artificial bee colony based on the method of adaptive neighborhood search is designed. According to the characteristics of the model, initial processing sequence is used as solution vector in order to narrow down feasible solutions. Fitness of populations is distinguished by non-dominated sorting. In the process of iteration, excellent individuals are retained so that the diversity of population distribution is increased. Finally, the method is applied to a simulation example, compared with the traditional multi-objective algorithm. The results obtained demonstrate that the improved ABC algorithm for hybrid flow shop scheduling problem is good effective and diversified.\",\"PeriodicalId\":384484,\"journal\":{\"name\":\"2016 2nd International Conference on Cloud Computing and Internet of Things (CCIOT)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Cloud Computing and Internet of Things (CCIOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIOT.2016.7868300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Cloud Computing and Internet of Things (CCIOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIOT.2016.7868300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在不相关并行机的混合流水车间调度问题模型中,建立了最大完工时间、总加权早/迟时间和总等待时间作为评价指标。设计了一种基于自适应邻域搜索方法的人工蜂群算法。根据模型的特点,利用初始处理序列作为解向量,缩小可行解的范围。种群的适应度以非优势排序来区分。在迭代过程中,保留了优秀的个体,增加了种群分布的多样性。最后,将该方法应用于一个仿真实例,并与传统的多目标算法进行了比较。结果表明,改进的ABC算法对混合流水车间调度问题具有良好的有效性和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving hybrid flow-shop scheduling based on improved multi-objective artificial bee colony algorithm
In the model of hybrid flow shop scheduling problem with unrelated parallel machines, the makespan, total weighted earliness/tardiness and total waiting time are established as evaluation index. An algorithm of artificial bee colony based on the method of adaptive neighborhood search is designed. According to the characteristics of the model, initial processing sequence is used as solution vector in order to narrow down feasible solutions. Fitness of populations is distinguished by non-dominated sorting. In the process of iteration, excellent individuals are retained so that the diversity of population distribution is increased. Finally, the method is applied to a simulation example, compared with the traditional multi-objective algorithm. The results obtained demonstrate that the improved ABC algorithm for hybrid flow shop scheduling problem is good effective and diversified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信