Thaleia Flessa, K. Worrall, D. Firstbrook, E. McGookin, D. Thomson, P. Harkness
{"title":"生物启发式非开挖钻井装置的 FDIR","authors":"Thaleia Flessa, K. Worrall, D. Firstbrook, E. McGookin, D. Thomson, P. Harkness","doi":"10.1109/CONTROL.2018.8516893","DOIUrl":null,"url":null,"abstract":"Failure Detection, Isolation and Recovery (FDIR) of autonomous systems working in hazardous conditions is essential. Methods of detection and recovery without intervention are required. This work describes the failure modes currently identified with an autonomous biologically inspired trenchless drilling robotic system. Inverse Simulation is used for detecting failures and is demonstrated on a simulation model of the robotic system. Results from the experiments, show that Inverse Simulation can be used to detect and identify system failures.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FDIR for a Biologically Inspired Trenchless Drilling Device\",\"authors\":\"Thaleia Flessa, K. Worrall, D. Firstbrook, E. McGookin, D. Thomson, P. Harkness\",\"doi\":\"10.1109/CONTROL.2018.8516893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure Detection, Isolation and Recovery (FDIR) of autonomous systems working in hazardous conditions is essential. Methods of detection and recovery without intervention are required. This work describes the failure modes currently identified with an autonomous biologically inspired trenchless drilling robotic system. Inverse Simulation is used for detecting failures and is demonstrated on a simulation model of the robotic system. Results from the experiments, show that Inverse Simulation can be used to detect and identify system failures.\",\"PeriodicalId\":266112,\"journal\":{\"name\":\"2018 UKACC 12th International Conference on Control (CONTROL)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 UKACC 12th International Conference on Control (CONTROL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONTROL.2018.8516893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FDIR for a Biologically Inspired Trenchless Drilling Device
Failure Detection, Isolation and Recovery (FDIR) of autonomous systems working in hazardous conditions is essential. Methods of detection and recovery without intervention are required. This work describes the failure modes currently identified with an autonomous biologically inspired trenchless drilling robotic system. Inverse Simulation is used for detecting failures and is demonstrated on a simulation model of the robotic system. Results from the experiments, show that Inverse Simulation can be used to detect and identify system failures.