自动道路标志识别系统综述

Zaidani Younes, Elmaroud Brahim, Ellahyani Ayoub
{"title":"自动道路标志识别系统综述","authors":"Zaidani Younes, Elmaroud Brahim, Ellahyani Ayoub","doi":"10.1109/IRASET57153.2023.10153025","DOIUrl":null,"url":null,"abstract":"Traffic-signs recognition(TSR) systems are an in-herent element of Intelligent Transport Systems (ITS), which is why it's considered a necessary element of Advanced Driver Assistance Systems (ADAS). One of our biggest challenges for driver assistance systems requires realizing the surrounding environment while driving the car. This paper details standard Traffic-signs recognition(TSR) system methods used in recent research. Features and classifiers used in modern TSR system methods are introduced and discussed. Most of these methods achieve great precision (accuracy of 98%) when tested in the German Traffic Sign Recognition Benchmark (GTSRB), the most extensively employed and publicly accessible TSR dataset. The paper compares the latest techniques by evaluating their processing time and precision. Furthermore, a discussion of possible future work is provided.","PeriodicalId":228989,"journal":{"name":"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Automatic Road Sign Recognition Systems\",\"authors\":\"Zaidani Younes, Elmaroud Brahim, Ellahyani Ayoub\",\"doi\":\"10.1109/IRASET57153.2023.10153025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic-signs recognition(TSR) systems are an in-herent element of Intelligent Transport Systems (ITS), which is why it's considered a necessary element of Advanced Driver Assistance Systems (ADAS). One of our biggest challenges for driver assistance systems requires realizing the surrounding environment while driving the car. This paper details standard Traffic-signs recognition(TSR) system methods used in recent research. Features and classifiers used in modern TSR system methods are introduced and discussed. Most of these methods achieve great precision (accuracy of 98%) when tested in the German Traffic Sign Recognition Benchmark (GTSRB), the most extensively employed and publicly accessible TSR dataset. The paper compares the latest techniques by evaluating their processing time and precision. Furthermore, a discussion of possible future work is provided.\",\"PeriodicalId\":228989,\"journal\":{\"name\":\"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRASET57153.2023.10153025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET57153.2023.10153025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交通标志识别(TSR)系统是智能交通系统(ITS)的一个固有元素,这就是为什么它被认为是高级驾驶辅助系统(ADAS)的必要元素。驾驶辅助系统面临的最大挑战之一,是在驾驶时对周围环境的感知。本文详细介绍了近年来研究中常用的标准交通标志识别方法。介绍和讨论了现代TSR系统方法的特点和分类器。当在德国交通标志识别基准(GTSRB)中进行测试时,这些方法中的大多数都达到了很高的精度(准确率为98%),GTSRB是最广泛使用和可公开访问的TSR数据集。本文从加工时间和加工精度两个方面对各种最新技术进行了比较。此外,还对未来可能的工作进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review of Automatic Road Sign Recognition Systems
Traffic-signs recognition(TSR) systems are an in-herent element of Intelligent Transport Systems (ITS), which is why it's considered a necessary element of Advanced Driver Assistance Systems (ADAS). One of our biggest challenges for driver assistance systems requires realizing the surrounding environment while driving the car. This paper details standard Traffic-signs recognition(TSR) system methods used in recent research. Features and classifiers used in modern TSR system methods are introduced and discussed. Most of these methods achieve great precision (accuracy of 98%) when tested in the German Traffic Sign Recognition Benchmark (GTSRB), the most extensively employed and publicly accessible TSR dataset. The paper compares the latest techniques by evaluating their processing time and precision. Furthermore, a discussion of possible future work is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信