基于标记CT和MRI图像的超声肝脏和肿瘤分割的机器学习

Laurent Man, Haoyang Wu, Junzheng Man, Xuegong Shi, Haohao Wang, Q. Liang
{"title":"基于标记CT和MRI图像的超声肝脏和肿瘤分割的机器学习","authors":"Laurent Man, Haoyang Wu, Junzheng Man, Xuegong Shi, Haohao Wang, Q. Liang","doi":"10.1109/IUS54386.2022.9957634","DOIUrl":null,"url":null,"abstract":"Using machine learning methods to segment liver and tumor in ultrasound (US) images has been challenging due to the general lack of quality labeled US training data. This paper applies the multi-modality image fusion labeling (MMIFL) method to transfer liver segmentation labels from Computed Topography (CT) and Magnetic Resonance Imaging (MRI) volume data to the corresponding US image set. The resulting labeled US data is then used to train and test specific machine learning models. The results show that segmenting liver and lesion on the US images based on the transferred labeling from CT/MRI images is feasible. Furthermore, due to the nature of the fusion technique, transfer learning is easily implemented. For baselining, we first reproduce the public available 2D UNet tuned for the CT/MRI segmentation, and further test other model architectures. The best model had an average liver DICE score of 82.09%.","PeriodicalId":272387,"journal":{"name":"2022 IEEE International Ultrasonics Symposium (IUS)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machine Learning for Liver and Tumor Segmentation in Ultrasound Based on Labeled CT and MRI Images\",\"authors\":\"Laurent Man, Haoyang Wu, Junzheng Man, Xuegong Shi, Haohao Wang, Q. Liang\",\"doi\":\"10.1109/IUS54386.2022.9957634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using machine learning methods to segment liver and tumor in ultrasound (US) images has been challenging due to the general lack of quality labeled US training data. This paper applies the multi-modality image fusion labeling (MMIFL) method to transfer liver segmentation labels from Computed Topography (CT) and Magnetic Resonance Imaging (MRI) volume data to the corresponding US image set. The resulting labeled US data is then used to train and test specific machine learning models. The results show that segmenting liver and lesion on the US images based on the transferred labeling from CT/MRI images is feasible. Furthermore, due to the nature of the fusion technique, transfer learning is easily implemented. For baselining, we first reproduce the public available 2D UNet tuned for the CT/MRI segmentation, and further test other model architectures. The best model had an average liver DICE score of 82.09%.\",\"PeriodicalId\":272387,\"journal\":{\"name\":\"2022 IEEE International Ultrasonics Symposium (IUS)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Ultrasonics Symposium (IUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IUS54386.2022.9957634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUS54386.2022.9957634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

使用机器学习方法在超声(US)图像中分割肝脏和肿瘤一直具有挑战性,因为普遍缺乏高质量的标记US训练数据。本文采用多模态图像融合标记(MMIFL)方法,将CT和MRI体积数据中的肝脏分割标记转移到相应的US图像集。结果标记的美国数据然后用于训练和测试特定的机器学习模型。结果表明,基于CT/MRI图像转移标记在US图像上分割肝脏和病变是可行的。此外,由于融合技术的性质,迁移学习很容易实现。对于基线,我们首先重现公共可用的2D UNet,用于CT/MRI分割,并进一步测试其他模型架构。最佳模型肝脏DICE平均评分为82.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning for Liver and Tumor Segmentation in Ultrasound Based on Labeled CT and MRI Images
Using machine learning methods to segment liver and tumor in ultrasound (US) images has been challenging due to the general lack of quality labeled US training data. This paper applies the multi-modality image fusion labeling (MMIFL) method to transfer liver segmentation labels from Computed Topography (CT) and Magnetic Resonance Imaging (MRI) volume data to the corresponding US image set. The resulting labeled US data is then used to train and test specific machine learning models. The results show that segmenting liver and lesion on the US images based on the transferred labeling from CT/MRI images is feasible. Furthermore, due to the nature of the fusion technique, transfer learning is easily implemented. For baselining, we first reproduce the public available 2D UNet tuned for the CT/MRI segmentation, and further test other model architectures. The best model had an average liver DICE score of 82.09%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信