高频金属氧化物压敏电阻模型对早期电磁脉冲的响应

T. Bowman, M. Halligan, Rodrigo Llanes
{"title":"高频金属氧化物压敏电阻模型对早期电磁脉冲的响应","authors":"T. Bowman, M. Halligan, Rodrigo Llanes","doi":"10.1109/EMCSI38923.2020.9191483","DOIUrl":null,"url":null,"abstract":"The electric power grid is one of the most critical infrastructures in the modern world, and the continued protection and resilience of this system from threats is of significant concern. One such set of threats is nanosecond-scale transient effects generated by high-altitude electromagnetic pulses, for which the effect on the power grid is still being studied. Lightning surge arresters serve as the current grid protection against fast transients but are designed and modeled for protection against lightning and switching transients. Surge arrester response to faster transients is not well known. This work defines a scalable metal-oxide surge arrester model with specific consideration to frequencies attributed to fast transient overvoltages from electromagnetic pulses. Measurements using vector network analyzer sweeps at low and high bias as well as high-voltage I-V curve traces are presented to define arrester behavior and to parameterize it from measurement data. The proposed model is compared to the standard IEEE model for lightning arresters in this paper. Furthermore, model parameters are defined by scalable terms to be easily implemented for transmission-level devices. The scalable model enables enhanced assessment of protection levels and grid susceptibility against fast transients.","PeriodicalId":189322,"journal":{"name":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High-Frequency Metal-Oxide Varistor Modeling Response to Early-time Electromagnetic Pulses\",\"authors\":\"T. Bowman, M. Halligan, Rodrigo Llanes\",\"doi\":\"10.1109/EMCSI38923.2020.9191483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electric power grid is one of the most critical infrastructures in the modern world, and the continued protection and resilience of this system from threats is of significant concern. One such set of threats is nanosecond-scale transient effects generated by high-altitude electromagnetic pulses, for which the effect on the power grid is still being studied. Lightning surge arresters serve as the current grid protection against fast transients but are designed and modeled for protection against lightning and switching transients. Surge arrester response to faster transients is not well known. This work defines a scalable metal-oxide surge arrester model with specific consideration to frequencies attributed to fast transient overvoltages from electromagnetic pulses. Measurements using vector network analyzer sweeps at low and high bias as well as high-voltage I-V curve traces are presented to define arrester behavior and to parameterize it from measurement data. The proposed model is compared to the standard IEEE model for lightning arresters in this paper. Furthermore, model parameters are defined by scalable terms to be easily implemented for transmission-level devices. The scalable model enables enhanced assessment of protection levels and grid susceptibility against fast transients.\",\"PeriodicalId\":189322,\"journal\":{\"name\":\"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCSI38923.2020.9191483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI38923.2020.9191483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

电网是现代世界最重要的基础设施之一,对电网系统的持续保护和抵御威胁的能力是一个值得关注的问题。其中一种威胁是高空电磁脉冲产生的纳秒级瞬态效应,其对电网的影响仍在研究中。雷电避雷器作为电流电网对快速瞬变的保护,但其设计和建模是为了防止雷电和开关瞬变。浪涌避雷器对快速瞬变的响应尚不清楚。这项工作定义了一个可扩展的金属氧化物避雷器模型,特别考虑了电磁脉冲产生的快速瞬态过电压的频率。采用矢量网络分析仪在低偏置和高偏置以及高压I-V曲线走线进行测量,以定义避雷器的行为并从测量数据中对其进行参数化。本文将该模型与标准的IEEE避雷器模型进行了比较。此外,模型参数由可伸缩术语定义,以便于传输级设备实现。可扩展模型可以增强对快速瞬变的保护级别和电网敏感性的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Frequency Metal-Oxide Varistor Modeling Response to Early-time Electromagnetic Pulses
The electric power grid is one of the most critical infrastructures in the modern world, and the continued protection and resilience of this system from threats is of significant concern. One such set of threats is nanosecond-scale transient effects generated by high-altitude electromagnetic pulses, for which the effect on the power grid is still being studied. Lightning surge arresters serve as the current grid protection against fast transients but are designed and modeled for protection against lightning and switching transients. Surge arrester response to faster transients is not well known. This work defines a scalable metal-oxide surge arrester model with specific consideration to frequencies attributed to fast transient overvoltages from electromagnetic pulses. Measurements using vector network analyzer sweeps at low and high bias as well as high-voltage I-V curve traces are presented to define arrester behavior and to parameterize it from measurement data. The proposed model is compared to the standard IEEE model for lightning arresters in this paper. Furthermore, model parameters are defined by scalable terms to be easily implemented for transmission-level devices. The scalable model enables enhanced assessment of protection levels and grid susceptibility against fast transients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信