分数阶布朗运动级数展开式的几乎确定收敛速率

Yi Chen, Jing Dong
{"title":"分数阶布朗运动级数展开式的几乎确定收敛速率","authors":"Yi Chen, Jing Dong","doi":"10.1109/WSC40007.2019.9004731","DOIUrl":null,"url":null,"abstract":"Fractional Brownian motions (fBM) and related processes are widely used in financial modeling to capture the complicated dependence structure of the volatility. In this paper, we analyze an infinite series representation of fBM proposed in (Dzhaparidze and Van Zanten 2004) and establish an almost sure convergence rate of the series representation. The rate is also shown to be optimal. We then demonstrate how the strong convergence rate result can be applied to construct simulation algorithms with path-by-path error guarantees.","PeriodicalId":127025,"journal":{"name":"2019 Winter Simulation Conference (WSC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Almost Sure Convergence Rate for A Series Expansion of Fractional Brownian Motion\",\"authors\":\"Yi Chen, Jing Dong\",\"doi\":\"10.1109/WSC40007.2019.9004731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional Brownian motions (fBM) and related processes are widely used in financial modeling to capture the complicated dependence structure of the volatility. In this paper, we analyze an infinite series representation of fBM proposed in (Dzhaparidze and Van Zanten 2004) and establish an almost sure convergence rate of the series representation. The rate is also shown to be optimal. We then demonstrate how the strong convergence rate result can be applied to construct simulation algorithms with path-by-path error guarantees.\",\"PeriodicalId\":127025,\"journal\":{\"name\":\"2019 Winter Simulation Conference (WSC)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC40007.2019.9004731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC40007.2019.9004731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分数阶布朗运动(fBM)及其相关过程被广泛应用于金融建模,以捕捉波动率复杂的依赖结构。本文分析了(Dzhaparidze and Van Zanten 2004)中提出的fBM的无穷级数表示,并建立了该级数表示的几乎确定的收敛速率。速率也被证明是最优的。然后,我们演示了如何将强收敛率结果应用于构建具有逐路误差保证的仿真算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Almost Sure Convergence Rate for A Series Expansion of Fractional Brownian Motion
Fractional Brownian motions (fBM) and related processes are widely used in financial modeling to capture the complicated dependence structure of the volatility. In this paper, we analyze an infinite series representation of fBM proposed in (Dzhaparidze and Van Zanten 2004) and establish an almost sure convergence rate of the series representation. The rate is also shown to be optimal. We then demonstrate how the strong convergence rate result can be applied to construct simulation algorithms with path-by-path error guarantees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信