基于星型拓扑的混合过采样技术和拒绝方法对不平衡数据进行分类

Chaekyu Lee, Jaekwang Kim
{"title":"基于星型拓扑的混合过采样技术和拒绝方法对不平衡数据进行分类","authors":"Chaekyu Lee, Jaekwang Kim","doi":"10.1109/ICDMW58026.2022.00033","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the star topology and rejection method (STARM), a new oversampling technique that generally performs well for varying data and algorithms. STARM is a hybrid technique that combines the advantages of Polynom-fit-SMOTE, LEE, and SMOTE, all of which have yielded high performance based on different technical features, and eliminates their disadvantages. To verify that the proposed technique exhibits high performance in general situations, we conducted 28,028 experiments to compare the predictive performance of 77 oversampling techniques with four machine learning algorithms for 91 imbalanced datasets of various types. Consequently, STARM yielded the highest performance on average among the 77 techniques. In addition, it showed excellent performance even in various algorithms, various imbalanced ratios, and various data volumes.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Oversampling Technique Based on Star Topology and Rejection Methodology for Classifying Imbalanced Data\",\"authors\":\"Chaekyu Lee, Jaekwang Kim\",\"doi\":\"10.1109/ICDMW58026.2022.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the star topology and rejection method (STARM), a new oversampling technique that generally performs well for varying data and algorithms. STARM is a hybrid technique that combines the advantages of Polynom-fit-SMOTE, LEE, and SMOTE, all of which have yielded high performance based on different technical features, and eliminates their disadvantages. To verify that the proposed technique exhibits high performance in general situations, we conducted 28,028 experiments to compare the predictive performance of 77 oversampling techniques with four machine learning algorithms for 91 imbalanced datasets of various types. Consequently, STARM yielded the highest performance on average among the 77 techniques. In addition, it showed excellent performance even in various algorithms, various imbalanced ratios, and various data volumes.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了星型拓扑和抑制方法(STARM),这是一种新的过采样技术,通常对不同的数据和算法表现良好。STARM是一种混合技术,它结合了多项式拟合SMOTE、LEE和SMOTE的优点,所有这些优点都基于不同的技术特征产生了高性能,并消除了它们的缺点。为了验证所提出的技术在一般情况下表现出高性能,我们进行了28,028个实验,以比较77种过采样技术与四种机器学习算法对91种不同类型的不平衡数据集的预测性能。因此,在77种技术中,STARM的平均性能最高。此外,即使在各种算法、各种不平衡比率、各种数据量下,它也表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Oversampling Technique Based on Star Topology and Rejection Methodology for Classifying Imbalanced Data
In this paper, we propose the star topology and rejection method (STARM), a new oversampling technique that generally performs well for varying data and algorithms. STARM is a hybrid technique that combines the advantages of Polynom-fit-SMOTE, LEE, and SMOTE, all of which have yielded high performance based on different technical features, and eliminates their disadvantages. To verify that the proposed technique exhibits high performance in general situations, we conducted 28,028 experiments to compare the predictive performance of 77 oversampling techniques with four machine learning algorithms for 91 imbalanced datasets of various types. Consequently, STARM yielded the highest performance on average among the 77 techniques. In addition, it showed excellent performance even in various algorithms, various imbalanced ratios, and various data volumes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信