{"title":"用于量化视觉兴趣的眼动记录鲁棒聚类","authors":"A. Santella, D. DeCarlo","doi":"10.1145/968363.968368","DOIUrl":null,"url":null,"abstract":"Characterizing the location and extent of a viewer's interest, in terms of eye movement recordings, informs a range of investigations in image and scene viewing. We present an automatic data-driven method for accomplishing this, which clusters visual point-of-regard (POR) measurements into gazes and regions-of-interest using the mean shift procedure. Clusters produced using this method form a structured representation of viewer interest, and at the same time are replicable and not heavily influenced by noise or outliers. Thus, they are useful in answering fine-grained questions about where and how a viewer examined an image.","PeriodicalId":127538,"journal":{"name":"Eye Tracking Research & Application","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"191","resultStr":"{\"title\":\"Robust clustering of eye movement recordings for quantification of visual interest\",\"authors\":\"A. Santella, D. DeCarlo\",\"doi\":\"10.1145/968363.968368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterizing the location and extent of a viewer's interest, in terms of eye movement recordings, informs a range of investigations in image and scene viewing. We present an automatic data-driven method for accomplishing this, which clusters visual point-of-regard (POR) measurements into gazes and regions-of-interest using the mean shift procedure. Clusters produced using this method form a structured representation of viewer interest, and at the same time are replicable and not heavily influenced by noise or outliers. Thus, they are useful in answering fine-grained questions about where and how a viewer examined an image.\",\"PeriodicalId\":127538,\"journal\":{\"name\":\"Eye Tracking Research & Application\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"191\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eye Tracking Research & Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/968363.968368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye Tracking Research & Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/968363.968368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust clustering of eye movement recordings for quantification of visual interest
Characterizing the location and extent of a viewer's interest, in terms of eye movement recordings, informs a range of investigations in image and scene viewing. We present an automatic data-driven method for accomplishing this, which clusters visual point-of-regard (POR) measurements into gazes and regions-of-interest using the mean shift procedure. Clusters produced using this method form a structured representation of viewer interest, and at the same time are replicable and not heavily influenced by noise or outliers. Thus, they are useful in answering fine-grained questions about where and how a viewer examined an image.