N. Rao, Lalitha Bhavani Konkyana, V. Raju, M.S.R. Naidu, Chukka Ramesh Babu
{"title":"5G毫米波应用中基于宽带元表面的高增益隔离MIMO天线","authors":"N. Rao, Lalitha Bhavani Konkyana, V. Raju, M.S.R. Naidu, Chukka Ramesh Babu","doi":"10.17762/ijcnis.v14i1s.5592","DOIUrl":null,"url":null,"abstract":"This paper proposes a Broadband Meta surface-based MIMO Antenna with High Gain and Isolation For 5G Millimeter applications. A single antenna is transformed into an array configuration to improve gain. As a result, each MIMO antenna is made up of a 1x2 element array supplied by a concurrent feedline. A 9x6 Split Ring Resonator (SRR) elongated cell is stacked above the antenna to improve gain and eliminate the coupling effects between the MIMO components. The substrate Rogers 5880 with a thickness of 0.787mm and 1.6mm is used for the antenna and meta surface. Furthermore, antenna performance is assessed using S-parameters, MIMO characteristics, and radiation patterns. The final designed antenna supports 5G applications by embracing the mm-wave frequency spectrum at Ka-band, there is a noticeable increase in gain. In addition, once the meta surface is introduced, there is an improvement in isolation. ","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Broadband Meta surface Based MIMO Antenna with High Gain and Isolation For 5G Millimeter Wave Applications\",\"authors\":\"N. Rao, Lalitha Bhavani Konkyana, V. Raju, M.S.R. Naidu, Chukka Ramesh Babu\",\"doi\":\"10.17762/ijcnis.v14i1s.5592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Broadband Meta surface-based MIMO Antenna with High Gain and Isolation For 5G Millimeter applications. A single antenna is transformed into an array configuration to improve gain. As a result, each MIMO antenna is made up of a 1x2 element array supplied by a concurrent feedline. A 9x6 Split Ring Resonator (SRR) elongated cell is stacked above the antenna to improve gain and eliminate the coupling effects between the MIMO components. The substrate Rogers 5880 with a thickness of 0.787mm and 1.6mm is used for the antenna and meta surface. Furthermore, antenna performance is assessed using S-parameters, MIMO characteristics, and radiation patterns. The final designed antenna supports 5G applications by embracing the mm-wave frequency spectrum at Ka-band, there is a noticeable increase in gain. In addition, once the meta surface is introduced, there is an improvement in isolation. \",\"PeriodicalId\":232613,\"journal\":{\"name\":\"Int. J. Commun. Networks Inf. Secur.\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Commun. Networks Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17762/ijcnis.v14i1s.5592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/ijcnis.v14i1s.5592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Broadband Meta surface Based MIMO Antenna with High Gain and Isolation For 5G Millimeter Wave Applications
This paper proposes a Broadband Meta surface-based MIMO Antenna with High Gain and Isolation For 5G Millimeter applications. A single antenna is transformed into an array configuration to improve gain. As a result, each MIMO antenna is made up of a 1x2 element array supplied by a concurrent feedline. A 9x6 Split Ring Resonator (SRR) elongated cell is stacked above the antenna to improve gain and eliminate the coupling effects between the MIMO components. The substrate Rogers 5880 with a thickness of 0.787mm and 1.6mm is used for the antenna and meta surface. Furthermore, antenna performance is assessed using S-parameters, MIMO characteristics, and radiation patterns. The final designed antenna supports 5G applications by embracing the mm-wave frequency spectrum at Ka-band, there is a noticeable increase in gain. In addition, once the meta surface is introduced, there is an improvement in isolation.