基于gpu的QTensor量子电路模拟器的性能评估与加速

Danylo Lykov, Angela Chen, Huaxuan Chen, Kristopher Keipert, Zheng Zhang, Tom Gibbs, Y. Alexeev
{"title":"基于gpu的QTensor量子电路模拟器的性能评估与加速","authors":"Danylo Lykov, Angela Chen, Huaxuan Chen, Kristopher Keipert, Zheng Zhang, Tom Gibbs, Y. Alexeev","doi":"10.1109/QCS54837.2021.00007","DOIUrl":null,"url":null,"abstract":"This work studies the porting and optimization of the tensor network simulator QTensor on GPUs, with the ultimate goal of simulating quantum circuits efficiently at scale on large GPU supercomputers. We implement NumPy, PyTorch, and CuPy backends and benchmark the codes to find the optimal allocation of tensor simulations to either a CPU or a GPU. We also present a dynamic mixed backend to achieve optimal performance. To demonstrate the performance, we simulate QAOA circuits for computing the MaxCut energy expectation. Our method achieves 176× speedup on a GPU over the NumPy baseline on a CPU for the benchmarked QAOA circuits to solve MaxCut problem on a 3-regular graph of size 30 with depth p = 4.","PeriodicalId":432600,"journal":{"name":"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Performance Evaluation and Acceleration of the QTensor Quantum Circuit Simulator on GPUs\",\"authors\":\"Danylo Lykov, Angela Chen, Huaxuan Chen, Kristopher Keipert, Zheng Zhang, Tom Gibbs, Y. Alexeev\",\"doi\":\"10.1109/QCS54837.2021.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the porting and optimization of the tensor network simulator QTensor on GPUs, with the ultimate goal of simulating quantum circuits efficiently at scale on large GPU supercomputers. We implement NumPy, PyTorch, and CuPy backends and benchmark the codes to find the optimal allocation of tensor simulations to either a CPU or a GPU. We also present a dynamic mixed backend to achieve optimal performance. To demonstrate the performance, we simulate QAOA circuits for computing the MaxCut energy expectation. Our method achieves 176× speedup on a GPU over the NumPy baseline on a CPU for the benchmarked QAOA circuits to solve MaxCut problem on a 3-regular graph of size 30 with depth p = 4.\",\"PeriodicalId\":432600,\"journal\":{\"name\":\"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QCS54837.2021.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QCS54837.2021.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本工作研究了张量网络模拟器QTensor在GPU上的移植和优化,最终目标是在大型GPU超级计算机上高效地大规模模拟量子电路。我们实现了NumPy、PyTorch和CuPy后端,并对代码进行基准测试,以找到张量模拟在CPU或GPU上的最佳分配。我们还提出了一个动态混合后端,以实现最佳性能。为了演示性能,我们模拟了QAOA电路来计算MaxCut能量期望。对于基准QAOA电路,我们的方法在CPU上的NumPy基线上实现了176倍的加速,以解决深度p = 4的大小为30的3规则图上的MaxCut问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation and Acceleration of the QTensor Quantum Circuit Simulator on GPUs
This work studies the porting and optimization of the tensor network simulator QTensor on GPUs, with the ultimate goal of simulating quantum circuits efficiently at scale on large GPU supercomputers. We implement NumPy, PyTorch, and CuPy backends and benchmark the codes to find the optimal allocation of tensor simulations to either a CPU or a GPU. We also present a dynamic mixed backend to achieve optimal performance. To demonstrate the performance, we simulate QAOA circuits for computing the MaxCut energy expectation. Our method achieves 176× speedup on a GPU over the NumPy baseline on a CPU for the benchmarked QAOA circuits to solve MaxCut problem on a 3-regular graph of size 30 with depth p = 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信