语义网格中子本体抽取的原型环境研究

Toshihiro Uchibayashi, B. Apduhan, N. Shiratori, J. Rahayu, D. Taniar
{"title":"语义网格中子本体抽取的原型环境研究","authors":"Toshihiro Uchibayashi, B. Apduhan, N. Shiratori, J. Rahayu, D. Taniar","doi":"10.1109/ICCSA.2010.82","DOIUrl":null,"url":null,"abstract":"To efficiently utilize the large-scale ontology data distributed on the Semantic Grid is a problem issue of high concern. Sub-ontology extraction that reflects the user requirements is one method of addressing the issue. Large-scale ontology data can be optimized by extracting the required sub-ontology. In this paper, we construct a Semantic Grid prototype environment to extract the sub-ontology and conducted preliminary evaluation through illustrations using UMLSSN ontology data.","PeriodicalId":405597,"journal":{"name":"2010 International Conference on Computational Science and Its Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On a Prototype Environment for Sub-ontology Extraction in Semantic Grid\",\"authors\":\"Toshihiro Uchibayashi, B. Apduhan, N. Shiratori, J. Rahayu, D. Taniar\",\"doi\":\"10.1109/ICCSA.2010.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To efficiently utilize the large-scale ontology data distributed on the Semantic Grid is a problem issue of high concern. Sub-ontology extraction that reflects the user requirements is one method of addressing the issue. Large-scale ontology data can be optimized by extracting the required sub-ontology. In this paper, we construct a Semantic Grid prototype environment to extract the sub-ontology and conducted preliminary evaluation through illustrations using UMLSSN ontology data.\",\"PeriodicalId\":405597,\"journal\":{\"name\":\"2010 International Conference on Computational Science and Its Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Science and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSA.2010.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Science and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2010.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如何有效利用分布在语义网格上的大规模本体数据是一个备受关注的问题。反映用户需求的子本体提取是解决这一问题的一种方法。通过提取所需的子本体,可以对大规模本体数据进行优化。本文利用UMLSSN本体数据,构建语义网格原型环境提取子本体,并通过实例进行初步评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Prototype Environment for Sub-ontology Extraction in Semantic Grid
To efficiently utilize the large-scale ontology data distributed on the Semantic Grid is a problem issue of high concern. Sub-ontology extraction that reflects the user requirements is one method of addressing the issue. Large-scale ontology data can be optimized by extracting the required sub-ontology. In this paper, we construct a Semantic Grid prototype environment to extract the sub-ontology and conducted preliminary evaluation through illustrations using UMLSSN ontology data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信