多目标多目标跟踪,雷达与红外传感器融合

R. Mobus, U. Kolbe
{"title":"多目标多目标跟踪,雷达与红外传感器融合","authors":"R. Mobus, U. Kolbe","doi":"10.1109/IVS.2004.1336475","DOIUrl":null,"url":null,"abstract":"This paper presents algorithms and techniques for single-sensor tracking and multi-sensor fusion of infrared and radar data. The results show that fusing radar data with infrared data considerably increases detection range, reliability and accuracy of the object tracking. This is mandatory for further development of driver assistance systems. Using multiple model filtering for sensor fusion applications helps to capture the dynamics of maneuvering objects while still achieving smooth object tracking for not maneuvering objects. This is important when safety and comfort systems have to make use of the same sensor information. Comfort systems generally require smoothly filtered data whereas for safety systems it is crucial to capture maneuvers of other road users as fast as possible. Multiple model filtering and probabilistic data association techniques are presented and all presented algorithms are tested in real-time on standard PC systems.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"65 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"Multi-target multi-object tracking, sensor fusion of radar and infrared\",\"authors\":\"R. Mobus, U. Kolbe\",\"doi\":\"10.1109/IVS.2004.1336475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents algorithms and techniques for single-sensor tracking and multi-sensor fusion of infrared and radar data. The results show that fusing radar data with infrared data considerably increases detection range, reliability and accuracy of the object tracking. This is mandatory for further development of driver assistance systems. Using multiple model filtering for sensor fusion applications helps to capture the dynamics of maneuvering objects while still achieving smooth object tracking for not maneuvering objects. This is important when safety and comfort systems have to make use of the same sensor information. Comfort systems generally require smoothly filtered data whereas for safety systems it is crucial to capture maneuvers of other road users as fast as possible. Multiple model filtering and probabilistic data association techniques are presented and all presented algorithms are tested in real-time on standard PC systems.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"65 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113

摘要

介绍了红外和雷达数据单传感器跟踪和多传感器融合的算法和技术。结果表明,雷达数据与红外数据融合后,可显著提高目标跟踪的探测距离、可靠性和精度。这是驾驶员辅助系统进一步发展的必要条件。在传感器融合应用中使用多模型滤波有助于捕获机动目标的动态,同时仍然实现对非机动目标的平滑跟踪。当安全和舒适系统必须使用相同的传感器信息时,这一点非常重要。舒适系统通常需要平滑过滤的数据,而安全系统则需要尽可能快地捕捉其他道路使用者的动作。提出了多模型滤波和概率数据关联技术,并在标准PC系统上进行了实时测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-target multi-object tracking, sensor fusion of radar and infrared
This paper presents algorithms and techniques for single-sensor tracking and multi-sensor fusion of infrared and radar data. The results show that fusing radar data with infrared data considerably increases detection range, reliability and accuracy of the object tracking. This is mandatory for further development of driver assistance systems. Using multiple model filtering for sensor fusion applications helps to capture the dynamics of maneuvering objects while still achieving smooth object tracking for not maneuvering objects. This is important when safety and comfort systems have to make use of the same sensor information. Comfort systems generally require smoothly filtered data whereas for safety systems it is crucial to capture maneuvers of other road users as fast as possible. Multiple model filtering and probabilistic data association techniques are presented and all presented algorithms are tested in real-time on standard PC systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信