肺结节图像分类的背景曲线

Fan Zhang, Yang Song, Weidong (Tom) Cai, Yun Zhou, S. Shan, D. Feng
{"title":"肺结节图像分类的背景曲线","authors":"Fan Zhang, Yang Song, Weidong (Tom) Cai, Yun Zhou, S. Shan, D. Feng","doi":"10.1109/DICTA.2013.6691494","DOIUrl":null,"url":null,"abstract":"In this paper, a feature-based imaging classification method is presented to classify the lung nodules in low dose computed tomography (LDCT) slides into four categories: well-circumscribed, vascularized, juxta-pleural and pleural-tail. The proposed method focuses on the feature design, which describes both lung nodule and surrounding context information, and contains two main stages: (1) superpixel labeling, which labels the pixels into foreground and background based on an image patch division approach, (2) context curve calculation, which transfers the superpixel labeling result into feature vector. While the first stage preprocesses the image, extracting the major context anatomical structures for each type of nodules, the context curve provides a discriminative description for intra- and inter-type nodules. The evaluation is conducted on a publicly available dataset and the results indicate the promising performance of the proposed method on lung nodule classification.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Context Curves for Classification of Lung Nodule Images\",\"authors\":\"Fan Zhang, Yang Song, Weidong (Tom) Cai, Yun Zhou, S. Shan, D. Feng\",\"doi\":\"10.1109/DICTA.2013.6691494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a feature-based imaging classification method is presented to classify the lung nodules in low dose computed tomography (LDCT) slides into four categories: well-circumscribed, vascularized, juxta-pleural and pleural-tail. The proposed method focuses on the feature design, which describes both lung nodule and surrounding context information, and contains two main stages: (1) superpixel labeling, which labels the pixels into foreground and background based on an image patch division approach, (2) context curve calculation, which transfers the superpixel labeling result into feature vector. While the first stage preprocesses the image, extracting the major context anatomical structures for each type of nodules, the context curve provides a discriminative description for intra- and inter-type nodules. The evaluation is conducted on a publicly available dataset and the results indicate the promising performance of the proposed method on lung nodule classification.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文提出一种基于影像特征的方法,将低剂量计算机断层扫描(LDCT)载玻片上的肺结节分为界限分明、血管化、胸膜旁结节和胸膜尾结节四类。该方法以特征设计为重点,同时描述肺结节和周围的上下文信息,主要包括两个阶段:(1)超像素标记,基于图像补丁划分方法将像素标记为前景和背景;(2)上下文曲线计算,将超像素标记结果转化为特征向量。第一阶段对图像进行预处理,提取每种类型结节的主要背景解剖结构,背景曲线为类型内和类型间的结节提供判别描述。在一个公开可用的数据集上进行了评估,结果表明所提出的方法在肺结节分类方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context Curves for Classification of Lung Nodule Images
In this paper, a feature-based imaging classification method is presented to classify the lung nodules in low dose computed tomography (LDCT) slides into four categories: well-circumscribed, vascularized, juxta-pleural and pleural-tail. The proposed method focuses on the feature design, which describes both lung nodule and surrounding context information, and contains two main stages: (1) superpixel labeling, which labels the pixels into foreground and background based on an image patch division approach, (2) context curve calculation, which transfers the superpixel labeling result into feature vector. While the first stage preprocesses the image, extracting the major context anatomical structures for each type of nodules, the context curve provides a discriminative description for intra- and inter-type nodules. The evaluation is conducted on a publicly available dataset and the results indicate the promising performance of the proposed method on lung nodule classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信