{"title":"MapReduce在图形模型上引导近似推理","authors":"Ahsanul Haque, Swarup Chandra, L. Khan, M. Baron","doi":"10.1109/CIDM.2014.7008702","DOIUrl":null,"url":null,"abstract":"A graphical model represents the data distribution of a data generating process and inherently captures its feature relationships. This stochastic model can be used to perform inference, to calculate posterior probabilities, in various applications such as classification. Exact inference algorithms are known to be intractable on large networks due to exponential time and space complexity. Approximate inference algorithms are instead widely used in practice to overcome this constraint, with a trade off in accuracy. Stochastic sampling is one such method where an approximate probability distribution is empirically evaluated using various sampling techniques. However, these algorithms may still suffer from scalability issues on large and complex networks. To address this challenge, we have designed and implemented several MapReduce based distributed versions of a specific type of approximate inference algorithm called Adaptive Importance Sampling (AIS). We compare and evaluate the proposed approaches using benchmark networks. Experimental result shows that our approach achieves significant scaleup and speedup compared to the sequential algorithm, while achieving similar accuracy asymptotically.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MapReduce guided approximate inference over graphical models\",\"authors\":\"Ahsanul Haque, Swarup Chandra, L. Khan, M. Baron\",\"doi\":\"10.1109/CIDM.2014.7008702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graphical model represents the data distribution of a data generating process and inherently captures its feature relationships. This stochastic model can be used to perform inference, to calculate posterior probabilities, in various applications such as classification. Exact inference algorithms are known to be intractable on large networks due to exponential time and space complexity. Approximate inference algorithms are instead widely used in practice to overcome this constraint, with a trade off in accuracy. Stochastic sampling is one such method where an approximate probability distribution is empirically evaluated using various sampling techniques. However, these algorithms may still suffer from scalability issues on large and complex networks. To address this challenge, we have designed and implemented several MapReduce based distributed versions of a specific type of approximate inference algorithm called Adaptive Importance Sampling (AIS). We compare and evaluate the proposed approaches using benchmark networks. Experimental result shows that our approach achieves significant scaleup and speedup compared to the sequential algorithm, while achieving similar accuracy asymptotically.\",\"PeriodicalId\":117542,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2014.7008702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MapReduce guided approximate inference over graphical models
A graphical model represents the data distribution of a data generating process and inherently captures its feature relationships. This stochastic model can be used to perform inference, to calculate posterior probabilities, in various applications such as classification. Exact inference algorithms are known to be intractable on large networks due to exponential time and space complexity. Approximate inference algorithms are instead widely used in practice to overcome this constraint, with a trade off in accuracy. Stochastic sampling is one such method where an approximate probability distribution is empirically evaluated using various sampling techniques. However, these algorithms may still suffer from scalability issues on large and complex networks. To address this challenge, we have designed and implemented several MapReduce based distributed versions of a specific type of approximate inference algorithm called Adaptive Importance Sampling (AIS). We compare and evaluate the proposed approaches using benchmark networks. Experimental result shows that our approach achieves significant scaleup and speedup compared to the sequential algorithm, while achieving similar accuracy asymptotically.