无先验知识的机器人辅助目标分割

Kun Li, M. Meng, Xijun Chen
{"title":"无先验知识的机器人辅助目标分割","authors":"Kun Li, M. Meng, Xijun Chen","doi":"10.1109/WCICA.2012.6359387","DOIUrl":null,"url":null,"abstract":"In robot perception system, distinguishing objects from complex environment is a difficult problem if without prior information. In this article, we study three cases that a robot may encounter in real-world application, no movable object, one object, or multiple objects, and then provide an object segmentation strategy through manipulation for each condition. The result shows that this method can provide sufficient prior information for accurate objects segmentation from robot's observation. Through this unsupervised algorithm, a robot can learn objects around reliably.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robot aided object segmentation without prior knowledge\",\"authors\":\"Kun Li, M. Meng, Xijun Chen\",\"doi\":\"10.1109/WCICA.2012.6359387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In robot perception system, distinguishing objects from complex environment is a difficult problem if without prior information. In this article, we study three cases that a robot may encounter in real-world application, no movable object, one object, or multiple objects, and then provide an object segmentation strategy through manipulation for each condition. The result shows that this method can provide sufficient prior information for accurate objects segmentation from robot's observation. Through this unsupervised algorithm, a robot can learn objects around reliably.\",\"PeriodicalId\":114901,\"journal\":{\"name\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2012.6359387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6359387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在机器人感知系统中,在没有先验信息的情况下,从复杂环境中识别物体是一个难题。在本文中,我们研究了机器人在现实应用中可能遇到的三种情况,即不移动物体、一个物体和多个物体,然后通过对每种情况的操作提供了一种物体分割策略。实验结果表明,该方法能够为机器人观测的目标精确分割提供充分的先验信息。通过这种无监督算法,机器人可以可靠地学习周围的物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robot aided object segmentation without prior knowledge
In robot perception system, distinguishing objects from complex environment is a difficult problem if without prior information. In this article, we study three cases that a robot may encounter in real-world application, no movable object, one object, or multiple objects, and then provide an object segmentation strategy through manipulation for each condition. The result shows that this method can provide sufficient prior information for accurate objects segmentation from robot's observation. Through this unsupervised algorithm, a robot can learn objects around reliably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信