利用机器学习技术改善和优化空气质量

R. Veeranjaneyulu, S. Boopathi, Rina Kumari, A. Vidyarthi, J. S. Isaac, V. Jaiganesh
{"title":"利用机器学习技术改善和优化空气质量","authors":"R. Veeranjaneyulu, S. Boopathi, Rina Kumari, A. Vidyarthi, J. S. Isaac, V. Jaiganesh","doi":"10.1109/ACCAI58221.2023.10201168","DOIUrl":null,"url":null,"abstract":"Due to the increased use of automobiles, the manufacturing industry, and the emission of pollutants from other human activities, air pollution has risen above the expected safety level. Accurate estimating of the air quality index(AQI) is essential for effective pollution control. In this research, an AQI prediction ANFIS network model was created utilizing an already-existing data set. In this instance, the ANFIS system compares the performances of the back propagation neural network model, hybrid models, the Gaussian-BNN model, and the Gaussian-hybrid BNN model. Based on the actual raw data set, it was noted that the R and IA values of the Gaussian hybrid model are 0.9899. The ANFIS gauss-hybrid model might therefore be used to predict the most accurate model data.","PeriodicalId":382104,"journal":{"name":"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air Quality Improvement and Optimisation Using Machine Learning Technique\",\"authors\":\"R. Veeranjaneyulu, S. Boopathi, Rina Kumari, A. Vidyarthi, J. S. Isaac, V. Jaiganesh\",\"doi\":\"10.1109/ACCAI58221.2023.10201168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increased use of automobiles, the manufacturing industry, and the emission of pollutants from other human activities, air pollution has risen above the expected safety level. Accurate estimating of the air quality index(AQI) is essential for effective pollution control. In this research, an AQI prediction ANFIS network model was created utilizing an already-existing data set. In this instance, the ANFIS system compares the performances of the back propagation neural network model, hybrid models, the Gaussian-BNN model, and the Gaussian-hybrid BNN model. Based on the actual raw data set, it was noted that the R and IA values of the Gaussian hybrid model are 0.9899. The ANFIS gauss-hybrid model might therefore be used to predict the most accurate model data.\",\"PeriodicalId\":382104,\"journal\":{\"name\":\"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCAI58221.2023.10201168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCAI58221.2023.10201168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于汽车、制造业的使用增加,以及其他人类活动排放的污染物,空气污染已经超过了预期的安全水平。准确估计空气质量指数(AQI)对有效控制污染至关重要。在本研究中,利用已有的数据集建立了AQI预测ANFIS网络模型。在这种情况下,ANFIS系统比较了反向传播神经网络模型、混合模型、高斯-BNN模型和高斯-混合BNN模型的性能。根据实际原始数据集,发现高斯混合模型的R和IA值均为0.9899。因此,可以使用ANFIS高斯混合模型来预测最准确的模型数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air Quality Improvement and Optimisation Using Machine Learning Technique
Due to the increased use of automobiles, the manufacturing industry, and the emission of pollutants from other human activities, air pollution has risen above the expected safety level. Accurate estimating of the air quality index(AQI) is essential for effective pollution control. In this research, an AQI prediction ANFIS network model was created utilizing an already-existing data set. In this instance, the ANFIS system compares the performances of the back propagation neural network model, hybrid models, the Gaussian-BNN model, and the Gaussian-hybrid BNN model. Based on the actual raw data set, it was noted that the R and IA values of the Gaussian hybrid model are 0.9899. The ANFIS gauss-hybrid model might therefore be used to predict the most accurate model data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信