Dennis Overbeck, Fabian Kurtz, S. Böcker, C. Wietfeld
{"title":"面向蜂窝能源系统混合关键业务的5G网络切片架构设计","authors":"Dennis Overbeck, Fabian Kurtz, S. Böcker, C. Wietfeld","doi":"10.1109/SmartGridComm52983.2022.9961023","DOIUrl":null,"url":null,"abstract":"The shift towards renewable energies is increasing communication demands, particularly in novel energy grid architectures. One such approach is the concept of cellular energy systems, which divide the grid into regions with the potential to operate independently. Management of the resulting energy flows between and within cells is highly complex. Thus communication becomes increasingly challenging. A promising method for handling the resulting mixed-critical data flows is the fifth generation of mobile radio networks, i.e., 5G. It enables reliable communication in public and private infrastructures via network slicing. Here, a single physical network is split up into multiple slices, each addressing the requirements of various services and devices optimally. This enables cost-efficient communications based on widely available Information and Communications Technology (ICT) infrastructures. In this work we provide an integrated architecture as well as a physical cellular energy system testing setup. This is supported by an open-source 4G/5G software stack and gateways for handling mixed-critical grid communications. The physical testbed is located at the Smart Grid Technology Lab (SGTL) at TU Dortmund university and enables real-world analysis of relevant scenarios. Results illustrate the capabilities of Radio Access Network (RAN) network slicing and provide insights on deploying dedicated mobile radio networks in cellular energy systems with mixed-critical services.","PeriodicalId":252202,"journal":{"name":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a 5G Network Slicing Architecture for Mixed-Critical Services in Cellular Energy Systems\",\"authors\":\"Dennis Overbeck, Fabian Kurtz, S. Böcker, C. Wietfeld\",\"doi\":\"10.1109/SmartGridComm52983.2022.9961023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shift towards renewable energies is increasing communication demands, particularly in novel energy grid architectures. One such approach is the concept of cellular energy systems, which divide the grid into regions with the potential to operate independently. Management of the resulting energy flows between and within cells is highly complex. Thus communication becomes increasingly challenging. A promising method for handling the resulting mixed-critical data flows is the fifth generation of mobile radio networks, i.e., 5G. It enables reliable communication in public and private infrastructures via network slicing. Here, a single physical network is split up into multiple slices, each addressing the requirements of various services and devices optimally. This enables cost-efficient communications based on widely available Information and Communications Technology (ICT) infrastructures. In this work we provide an integrated architecture as well as a physical cellular energy system testing setup. This is supported by an open-source 4G/5G software stack and gateways for handling mixed-critical grid communications. The physical testbed is located at the Smart Grid Technology Lab (SGTL) at TU Dortmund university and enables real-world analysis of relevant scenarios. Results illustrate the capabilities of Radio Access Network (RAN) network slicing and provide insights on deploying dedicated mobile radio networks in cellular energy systems with mixed-critical services.\",\"PeriodicalId\":252202,\"journal\":{\"name\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm52983.2022.9961023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm52983.2022.9961023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a 5G Network Slicing Architecture for Mixed-Critical Services in Cellular Energy Systems
The shift towards renewable energies is increasing communication demands, particularly in novel energy grid architectures. One such approach is the concept of cellular energy systems, which divide the grid into regions with the potential to operate independently. Management of the resulting energy flows between and within cells is highly complex. Thus communication becomes increasingly challenging. A promising method for handling the resulting mixed-critical data flows is the fifth generation of mobile radio networks, i.e., 5G. It enables reliable communication in public and private infrastructures via network slicing. Here, a single physical network is split up into multiple slices, each addressing the requirements of various services and devices optimally. This enables cost-efficient communications based on widely available Information and Communications Technology (ICT) infrastructures. In this work we provide an integrated architecture as well as a physical cellular energy system testing setup. This is supported by an open-source 4G/5G software stack and gateways for handling mixed-critical grid communications. The physical testbed is located at the Smart Grid Technology Lab (SGTL) at TU Dortmund university and enables real-world analysis of relevant scenarios. Results illustrate the capabilities of Radio Access Network (RAN) network slicing and provide insights on deploying dedicated mobile radio networks in cellular energy systems with mixed-critical services.