{"title":"通过接种流行病缓解物联网不安全","authors":"James A. Jerkins, Jillian Stupiansky","doi":"10.1145/3190645.3190678","DOIUrl":null,"url":null,"abstract":"Compromising IoT devices to build botnets and disrupt critical infrastructure is an existential threat. Refrigerators, washing machines, DVRs, security cameras, and other consumer goods are high value targets for attackers due to inherent security weaknesses, a lack of consumer security awareness, and an absence of market forces or regulatory requirements to motivate IoT security. As a result of the deficiencies, attackers have quickly assembled large scale botnets of IoT devices to disable Internet infrastructure and deny access to dominant web properties with near impunity. IoT malware is often transmitted from host to host similar to how biological viruses spread in populations. Both biological viruses and computer malware may exhibit epidemic characteristics when spreading in populations of vulnerable hosts. Vaccines are used to stimulate resistance to biological viruses by inoculating a sufficient number of hosts in the vulnerable population to limit the spread of the biological virus and prevent epidemics. Inoculation programs may be viewed as a human instigated epidemic that spreads a vaccine in order to mitigate the damage from a biological virus. In this paper we propose a technique to create an inoculation epidemic for IoT devices using a novel variation of a SIS epidemic model and show experimental results that indicate utility of the approach.","PeriodicalId":403177,"journal":{"name":"Proceedings of the ACMSE 2018 Conference","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Mitigating IoT insecurity with inoculation epidemics\",\"authors\":\"James A. Jerkins, Jillian Stupiansky\",\"doi\":\"10.1145/3190645.3190678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compromising IoT devices to build botnets and disrupt critical infrastructure is an existential threat. Refrigerators, washing machines, DVRs, security cameras, and other consumer goods are high value targets for attackers due to inherent security weaknesses, a lack of consumer security awareness, and an absence of market forces or regulatory requirements to motivate IoT security. As a result of the deficiencies, attackers have quickly assembled large scale botnets of IoT devices to disable Internet infrastructure and deny access to dominant web properties with near impunity. IoT malware is often transmitted from host to host similar to how biological viruses spread in populations. Both biological viruses and computer malware may exhibit epidemic characteristics when spreading in populations of vulnerable hosts. Vaccines are used to stimulate resistance to biological viruses by inoculating a sufficient number of hosts in the vulnerable population to limit the spread of the biological virus and prevent epidemics. Inoculation programs may be viewed as a human instigated epidemic that spreads a vaccine in order to mitigate the damage from a biological virus. In this paper we propose a technique to create an inoculation epidemic for IoT devices using a novel variation of a SIS epidemic model and show experimental results that indicate utility of the approach.\",\"PeriodicalId\":403177,\"journal\":{\"name\":\"Proceedings of the ACMSE 2018 Conference\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACMSE 2018 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3190645.3190678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACMSE 2018 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3190645.3190678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mitigating IoT insecurity with inoculation epidemics
Compromising IoT devices to build botnets and disrupt critical infrastructure is an existential threat. Refrigerators, washing machines, DVRs, security cameras, and other consumer goods are high value targets for attackers due to inherent security weaknesses, a lack of consumer security awareness, and an absence of market forces or regulatory requirements to motivate IoT security. As a result of the deficiencies, attackers have quickly assembled large scale botnets of IoT devices to disable Internet infrastructure and deny access to dominant web properties with near impunity. IoT malware is often transmitted from host to host similar to how biological viruses spread in populations. Both biological viruses and computer malware may exhibit epidemic characteristics when spreading in populations of vulnerable hosts. Vaccines are used to stimulate resistance to biological viruses by inoculating a sufficient number of hosts in the vulnerable population to limit the spread of the biological virus and prevent epidemics. Inoculation programs may be viewed as a human instigated epidemic that spreads a vaccine in order to mitigate the damage from a biological virus. In this paper we propose a technique to create an inoculation epidemic for IoT devices using a novel variation of a SIS epidemic model and show experimental results that indicate utility of the approach.