叶片根部关节建模及其几何变异性对调谐和失谐叶片非线性强迫响应的影响分析

Adam Koscso, E. Petrov
{"title":"叶片根部关节建模及其几何变异性对调谐和失谐叶片非线性强迫响应的影响分析","authors":"Adam Koscso, E. Petrov","doi":"10.1115/GT2020-15225","DOIUrl":null,"url":null,"abstract":"\n One of the major sources of the damping of the forced vibration for bladed disk structures is the micro-slip motion at the contact interfaces of blade-disk joints. In this paper, the modeling strategies of nonlinear contact interactions at blade roots are examined using high-fidelity modelling of bladed disk assemblies and the nonlinear contact interactions at blade-disk contact patches. The analysis is performed in the frequency domain using multiharmonic harmonic balance method and analytically formulated node-to-node contact elements modelling frictional and gap nonlinear interactions.\n The effect of the number, location and distribution of nonlinear contact elements are analyzed using cyclically symmetric bladed disks. The possibility of using the number of the contact elements noticeably smaller than the total number of nodes in the finite element mesh created at the contact interface for the high-fidelity bladed disk model is demonstrated. The parameters for the modeling of the root damping are analysed for tuned and mistuned bladed disks.\n The geometric shapes of blade roots and corresponding slots in disks cannot be manufactured perfectly and there is inevitable root joint geometry variability within the manufacturing tolerances. Based on these tolerances, the extreme cases of the geometry variation are defined and the assessment of the possible effects of the root geometry variation on the nonlinear forced response are performed based on a set of these extreme cases.","PeriodicalId":186943,"journal":{"name":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blade Root Joint Modelling and Analysis of Effects of Their Geometry Variability on the Nonlinear Forced Response of Tuned and Mistuned Bladed Disks\",\"authors\":\"Adam Koscso, E. Petrov\",\"doi\":\"10.1115/GT2020-15225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n One of the major sources of the damping of the forced vibration for bladed disk structures is the micro-slip motion at the contact interfaces of blade-disk joints. In this paper, the modeling strategies of nonlinear contact interactions at blade roots are examined using high-fidelity modelling of bladed disk assemblies and the nonlinear contact interactions at blade-disk contact patches. The analysis is performed in the frequency domain using multiharmonic harmonic balance method and analytically formulated node-to-node contact elements modelling frictional and gap nonlinear interactions.\\n The effect of the number, location and distribution of nonlinear contact elements are analyzed using cyclically symmetric bladed disks. The possibility of using the number of the contact elements noticeably smaller than the total number of nodes in the finite element mesh created at the contact interface for the high-fidelity bladed disk model is demonstrated. The parameters for the modeling of the root damping are analysed for tuned and mistuned bladed disks.\\n The geometric shapes of blade roots and corresponding slots in disks cannot be manufactured perfectly and there is inevitable root joint geometry variability within the manufacturing tolerances. Based on these tolerances, the extreme cases of the geometry variation are defined and the assessment of the possible effects of the root geometry variation on the nonlinear forced response are performed based on a set of these extreme cases.\",\"PeriodicalId\":186943,\"journal\":{\"name\":\"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2020-15225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-15225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

叶盘结构受迫振动阻尼的主要来源之一是叶盘结合部接触界面处的微滑移运动。本文通过对叶盘组件的高保真建模和叶盘接触斑块的非线性接触相互作用,研究了叶片根部非线性接触相互作用的建模策略。分析在频域使用多谐平衡法和解析公式的节点对节点接触单元来模拟摩擦和间隙非线性相互作用。利用循环对称叶片分析了非线性接触单元的数量、位置和分布对振动的影响。在高保真叶片盘模型中,在接触界面处创建的有限元网格中,使用明显小于节点总数的接触单元数的可能性得到了证明。分析了调谐和失谐叶片盘的根阻尼建模参数。叶片根部及其对应槽的几何形状不可能被完美地制造出来,在制造公差范围内不可避免地存在根部连接的几何变异性。在此基础上,定义了几何变化的极端情况,并基于一组极端情况评估了根几何变化对非线性受力响应的可能影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blade Root Joint Modelling and Analysis of Effects of Their Geometry Variability on the Nonlinear Forced Response of Tuned and Mistuned Bladed Disks
One of the major sources of the damping of the forced vibration for bladed disk structures is the micro-slip motion at the contact interfaces of blade-disk joints. In this paper, the modeling strategies of nonlinear contact interactions at blade roots are examined using high-fidelity modelling of bladed disk assemblies and the nonlinear contact interactions at blade-disk contact patches. The analysis is performed in the frequency domain using multiharmonic harmonic balance method and analytically formulated node-to-node contact elements modelling frictional and gap nonlinear interactions. The effect of the number, location and distribution of nonlinear contact elements are analyzed using cyclically symmetric bladed disks. The possibility of using the number of the contact elements noticeably smaller than the total number of nodes in the finite element mesh created at the contact interface for the high-fidelity bladed disk model is demonstrated. The parameters for the modeling of the root damping are analysed for tuned and mistuned bladed disks. The geometric shapes of blade roots and corresponding slots in disks cannot be manufactured perfectly and there is inevitable root joint geometry variability within the manufacturing tolerances. Based on these tolerances, the extreme cases of the geometry variation are defined and the assessment of the possible effects of the root geometry variation on the nonlinear forced response are performed based on a set of these extreme cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信