发现和可视化基于时间的Web访问行为

Baoyao Zhou, S. Hui, A. Fong
{"title":"发现和可视化基于时间的Web访问行为","authors":"Baoyao Zhou, S. Hui, A. Fong","doi":"10.1109/WI.2005.55","DOIUrl":null,"url":null,"abstract":"Discovering and understanding Web users' surfing behavior are essential for the development of successful Web monitoring and recommendation systems. In this paper, we propose a Web usage mining approach for the automatic discovery and visualization of temporal-based Web access behavior of individual users by mining client-side logs. The proposed approach is based on a Web usage lattice model which represents a hierarchy of Web access activities. To describe such Web access activities, we incorporate fuzzy logic to represent real life temporal concepts such as morning, afternoon and evening, and meaningful Web categories such as news, sports and chat. Based on the lattice, temporal and association behavior patterns can be extracted and visualized.","PeriodicalId":213856,"journal":{"name":"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Discovering and visualizing temporal-based Web access behavior\",\"authors\":\"Baoyao Zhou, S. Hui, A. Fong\",\"doi\":\"10.1109/WI.2005.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering and understanding Web users' surfing behavior are essential for the development of successful Web monitoring and recommendation systems. In this paper, we propose a Web usage mining approach for the automatic discovery and visualization of temporal-based Web access behavior of individual users by mining client-side logs. The proposed approach is based on a Web usage lattice model which represents a hierarchy of Web access activities. To describe such Web access activities, we incorporate fuzzy logic to represent real life temporal concepts such as morning, afternoon and evening, and meaningful Web categories such as news, sports and chat. Based on the lattice, temporal and association behavior patterns can be extracted and visualized.\",\"PeriodicalId\":213856,\"journal\":{\"name\":\"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2005.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2005.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

发现和理解Web用户的浏览行为是开发成功的Web监控和推荐系统的关键。在本文中,我们提出了一种Web使用挖掘方法,通过挖掘客户端日志来自动发现和可视化个人用户基于时间的Web访问行为。提出的方法基于Web使用格模型,该模型表示Web访问活动的层次结构。为了描述这样的Web访问活动,我们采用模糊逻辑来表示现实生活中的时间概念,如上午、下午和晚上,以及有意义的Web类别,如新闻、体育和聊天。基于晶格,可以提取和可视化时间和关联行为模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering and visualizing temporal-based Web access behavior
Discovering and understanding Web users' surfing behavior are essential for the development of successful Web monitoring and recommendation systems. In this paper, we propose a Web usage mining approach for the automatic discovery and visualization of temporal-based Web access behavior of individual users by mining client-side logs. The proposed approach is based on a Web usage lattice model which represents a hierarchy of Web access activities. To describe such Web access activities, we incorporate fuzzy logic to represent real life temporal concepts such as morning, afternoon and evening, and meaningful Web categories such as news, sports and chat. Based on the lattice, temporal and association behavior patterns can be extracted and visualized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信