给出了静力学中机械臂关节受力的计算公式

S. G. Pudovkina, A. I. Telegin
{"title":"给出了静力学中机械臂关节受力的计算公式","authors":"S. G. Pudovkina, A. I. Telegin","doi":"10.14529/ctcr210305","DOIUrl":null,"url":null,"abstract":"The problem of bulkiness of mathematical models of manipulative systems of industrial robots is solved. Here we consider formulas for calculating static reactions in joints and formulas for active forces that balance the forces of gravity acting on the manipulator's bodies in its stationary state. The manipulator can be in such a state when it is before capturing the object of manipulation and releasing it, or when it is performing some assembly operations, or it is during spot welding and in slow (quasi-static) arc-welding and painting processes. Aim. The aim is to derive general recur-rence and finite formulas for calculating the reaction forces in joints and their projections to the ax-es of the coordinate system rigidly connected with the selected body. Express the formulas of force projections in terms of guiding cosines and justify their optimality in terms of the minimum of arithmetic operations. Derive general inverse recurrence formulas for writing out the guide cosines of the axes associated with the moving bodies of the coordinate system with respect to the stationary coordinate system. Research methods. The methods of research relate to vector mechanics and sys-tems analysis, and the algorithmization of calculations by reducing them to the use of recurrent formulas. Results. A systematic analysis of general formulas, in which all possible regular expres-sions are highlighted which are corresponding unambiguously to the kinematic parameters of ma-nipulators, is performed. These regular expressions are used in software for analytical modeling of manipulator, in particular, for the analytical solution of problems of statics of a manipulator. The method of analytical verification of the prescribed formulas is described. The tasks of writing out optimal formulas for calculating the projections of static reaction forces in joints have been solved. And the tasks of writing out optimal formulas for calculating active forces in progressive joints of universal manipulators with six degrees of freedom, operating in Cartesian, cylindrical, spherical and angular coordinate systems, have been solved also. Analytical verification of the derived equations of stat-ics is performed. Examples of the reuse of the derived formulas for manipulators with the same kin-ematic schemes of their subsystems. Conclusion. Expressions of the equations of statics of manipu-lators through the guide cosines of the axes of the associated coordinate systems of their bodies al-low us to write these equations through the known parameters of body orientation. The recurrent formulas for calculating directional cosines allows to use recursive functions in their software im-plementation, i.e. to increase the computational efficiency of the software.","PeriodicalId":338904,"journal":{"name":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WRITING OUT OF FORMULAS FOR CALCULATING FORCES IN THE JOINTS OF MANIPULATORS IN STATICS\",\"authors\":\"S. G. Pudovkina, A. I. Telegin\",\"doi\":\"10.14529/ctcr210305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of bulkiness of mathematical models of manipulative systems of industrial robots is solved. Here we consider formulas for calculating static reactions in joints and formulas for active forces that balance the forces of gravity acting on the manipulator's bodies in its stationary state. The manipulator can be in such a state when it is before capturing the object of manipulation and releasing it, or when it is performing some assembly operations, or it is during spot welding and in slow (quasi-static) arc-welding and painting processes. Aim. The aim is to derive general recur-rence and finite formulas for calculating the reaction forces in joints and their projections to the ax-es of the coordinate system rigidly connected with the selected body. Express the formulas of force projections in terms of guiding cosines and justify their optimality in terms of the minimum of arithmetic operations. Derive general inverse recurrence formulas for writing out the guide cosines of the axes associated with the moving bodies of the coordinate system with respect to the stationary coordinate system. Research methods. The methods of research relate to vector mechanics and sys-tems analysis, and the algorithmization of calculations by reducing them to the use of recurrent formulas. Results. A systematic analysis of general formulas, in which all possible regular expres-sions are highlighted which are corresponding unambiguously to the kinematic parameters of ma-nipulators, is performed. These regular expressions are used in software for analytical modeling of manipulator, in particular, for the analytical solution of problems of statics of a manipulator. The method of analytical verification of the prescribed formulas is described. The tasks of writing out optimal formulas for calculating the projections of static reaction forces in joints have been solved. And the tasks of writing out optimal formulas for calculating active forces in progressive joints of universal manipulators with six degrees of freedom, operating in Cartesian, cylindrical, spherical and angular coordinate systems, have been solved also. Analytical verification of the derived equations of stat-ics is performed. Examples of the reuse of the derived formulas for manipulators with the same kin-ematic schemes of their subsystems. Conclusion. Expressions of the equations of statics of manipu-lators through the guide cosines of the axes of the associated coordinate systems of their bodies al-low us to write these equations through the known parameters of body orientation. The recurrent formulas for calculating directional cosines allows to use recursive functions in their software im-plementation, i.e. to increase the computational efficiency of the software.\",\"PeriodicalId\":338904,\"journal\":{\"name\":\"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/ctcr210305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/ctcr210305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决了工业机器人操纵系统数学模型庞大的问题。在这里,我们考虑计算关节静力反应的公式和平衡作用在机械臂静止状态下的重力的主动力的公式。机械手在捕获操纵对象并释放之前,或在进行某些装配操作时,或在点焊和慢(准静态)弧焊和喷涂过程中,都可以处于这种状态。的目标。目的是推导出计算关节反作用力的一般递归公式和有限公式,以及它们在与选定物体刚性连接的坐标系轴上的投影。用引导余弦来表示力投影的公式,并用最小的算术运算来证明其最优性。推导出一般的逆递推公式,用于写出与静止坐标系中运动物体相关的坐标轴的导余弦。研究方法。研究方法涉及矢量力学和系统分析,以及通过使用循环公式将其简化为计算的算法化。结果。对一般公式进行了系统的分析,其中强调了所有可能的正则表达式,这些正则表达式明确地对应于机械手的运动参数。这些正则表达式用于机械臂解析建模软件,特别是用于机械臂静力学问题的解析求解。叙述了公式的解析验证方法。解决了计算节点静力反作用力投影的最优公式的编制问题。并解决了在直角坐标系、柱坐标系、球坐标系和角坐标系下六自由度万能机械臂进动关节主动力的优化计算公式的编制问题。对导出的静力学方程进行了分析验证。对于具有相同子系统运动学方案的机械臂,给出了推导公式的重用实例。结论。利用机械臂相关坐标系轴的导余弦来表示机械臂的静力学方程,使我们可以利用已知的机械臂姿态参数来表示这些方程。计算方向余弦的递归公式允许在其软件实现中使用递归函数,即提高软件的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WRITING OUT OF FORMULAS FOR CALCULATING FORCES IN THE JOINTS OF MANIPULATORS IN STATICS
The problem of bulkiness of mathematical models of manipulative systems of industrial robots is solved. Here we consider formulas for calculating static reactions in joints and formulas for active forces that balance the forces of gravity acting on the manipulator's bodies in its stationary state. The manipulator can be in such a state when it is before capturing the object of manipulation and releasing it, or when it is performing some assembly operations, or it is during spot welding and in slow (quasi-static) arc-welding and painting processes. Aim. The aim is to derive general recur-rence and finite formulas for calculating the reaction forces in joints and their projections to the ax-es of the coordinate system rigidly connected with the selected body. Express the formulas of force projections in terms of guiding cosines and justify their optimality in terms of the minimum of arithmetic operations. Derive general inverse recurrence formulas for writing out the guide cosines of the axes associated with the moving bodies of the coordinate system with respect to the stationary coordinate system. Research methods. The methods of research relate to vector mechanics and sys-tems analysis, and the algorithmization of calculations by reducing them to the use of recurrent formulas. Results. A systematic analysis of general formulas, in which all possible regular expres-sions are highlighted which are corresponding unambiguously to the kinematic parameters of ma-nipulators, is performed. These regular expressions are used in software for analytical modeling of manipulator, in particular, for the analytical solution of problems of statics of a manipulator. The method of analytical verification of the prescribed formulas is described. The tasks of writing out optimal formulas for calculating the projections of static reaction forces in joints have been solved. And the tasks of writing out optimal formulas for calculating active forces in progressive joints of universal manipulators with six degrees of freedom, operating in Cartesian, cylindrical, spherical and angular coordinate systems, have been solved also. Analytical verification of the derived equations of stat-ics is performed. Examples of the reuse of the derived formulas for manipulators with the same kin-ematic schemes of their subsystems. Conclusion. Expressions of the equations of statics of manipu-lators through the guide cosines of the axes of the associated coordinate systems of their bodies al-low us to write these equations through the known parameters of body orientation. The recurrent formulas for calculating directional cosines allows to use recursive functions in their software im-plementation, i.e. to increase the computational efficiency of the software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信