具有Beddington-DeAngelis发生率和CTL免疫应答的延迟病毒动力学模型的全局分析

Lisha Liang, Yongmei Su
{"title":"具有Beddington-DeAngelis发生率和CTL免疫应答的延迟病毒动力学模型的全局分析","authors":"Lisha Liang, Yongmei Su","doi":"10.1109/ISB.2014.6990424","DOIUrl":null,"url":null,"abstract":"In this paper, an HIV-1 infection model with Beddington-DeAngelis infection rate and CTL immune response is investaged. We derive the basic reproduction number R0 for the viral infection model. By constructing suitable Lyapunov functionals and using LaSalle invariant principle for the delay differential equations, we find when R0 ≤ 1, the infection-free equilibrium is globally asymptotically stable. And if the CTL immune reproductive number R1 ≤ 1, the immune-free equilibrium and the endemic equilibrium are globally asymptotically stable.","PeriodicalId":249103,"journal":{"name":"2014 8th International Conference on Systems Biology (ISB)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global analysis of a delay virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response\",\"authors\":\"Lisha Liang, Yongmei Su\",\"doi\":\"10.1109/ISB.2014.6990424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an HIV-1 infection model with Beddington-DeAngelis infection rate and CTL immune response is investaged. We derive the basic reproduction number R0 for the viral infection model. By constructing suitable Lyapunov functionals and using LaSalle invariant principle for the delay differential equations, we find when R0 ≤ 1, the infection-free equilibrium is globally asymptotically stable. And if the CTL immune reproductive number R1 ≤ 1, the immune-free equilibrium and the endemic equilibrium are globally asymptotically stable.\",\"PeriodicalId\":249103,\"journal\":{\"name\":\"2014 8th International Conference on Systems Biology (ISB)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 8th International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2014.6990424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2014.6990424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种具有Beddington-DeAngelis感染率和CTL免疫应答的HIV-1感染模型。我们导出了病毒感染模型的基本繁殖数R0。通过构造合适的Lyapunov泛函,利用LaSalle不变原理,得到了当R0≤1时,无感染平衡点是全局渐近稳定的。当CTL免疫繁殖数R1≤1时,无免疫平衡和地方性平衡全局渐近稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global analysis of a delay virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response
In this paper, an HIV-1 infection model with Beddington-DeAngelis infection rate and CTL immune response is investaged. We derive the basic reproduction number R0 for the viral infection model. By constructing suitable Lyapunov functionals and using LaSalle invariant principle for the delay differential equations, we find when R0 ≤ 1, the infection-free equilibrium is globally asymptotically stable. And if the CTL immune reproductive number R1 ≤ 1, the immune-free equilibrium and the endemic equilibrium are globally asymptotically stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信