基于改进两步聚合和赢家通吃的动态规划的实时精确立体匹配

Xuefeng Chang, Zhong Zhou, Liang Wang, Ying Shi, Qinping Zhao
{"title":"基于改进两步聚合和赢家通吃的动态规划的实时精确立体匹配","authors":"Xuefeng Chang, Zhong Zhou, Liang Wang, Ying Shi, Qinping Zhao","doi":"10.1109/3DIMPVT.2011.17","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time stereo algorithm that estimates scene depth information with high accuracy. Our algorithm consists of two novel components. First, we apply a modified two-pass aggregation to the adaptive cost aggregation process, use color similarity to calculate support weight, and introduce a credibility estimation mechanism to reduce accuracy loss during two-pass aggregation. Second, we present an amended scan-line optimization technique, which combines winner-take-all and dynamic programming. Our algorithm runs at 20 fps on 320×240 video with a disparity search range of 24. The experimental results are evaluated on the Middlebury benchmark data sets, showing that our method achieves the best reconstruction accuracy among all real-time stereo algorithms.","PeriodicalId":330003,"journal":{"name":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Real-Time Accurate Stereo Matching Using Modified Two-Pass Aggregation and Winner-Take-All Guided Dynamic Programming\",\"authors\":\"Xuefeng Chang, Zhong Zhou, Liang Wang, Ying Shi, Qinping Zhao\",\"doi\":\"10.1109/3DIMPVT.2011.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a real-time stereo algorithm that estimates scene depth information with high accuracy. Our algorithm consists of two novel components. First, we apply a modified two-pass aggregation to the adaptive cost aggregation process, use color similarity to calculate support weight, and introduce a credibility estimation mechanism to reduce accuracy loss during two-pass aggregation. Second, we present an amended scan-line optimization technique, which combines winner-take-all and dynamic programming. Our algorithm runs at 20 fps on 320×240 video with a disparity search range of 24. The experimental results are evaluated on the Middlebury benchmark data sets, showing that our method achieves the best reconstruction accuracy among all real-time stereo algorithms.\",\"PeriodicalId\":330003,\"journal\":{\"name\":\"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIMPVT.2011.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIMPVT.2011.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文提出了一种高精度的场景深度信息实时立体估计算法。我们的算法由两个新颖的部分组成。首先,在自适应成本聚合过程中引入改进的两步聚合方法,利用颜色相似度计算支持权值,并引入可信度估计机制以降低两步聚合过程中的准确性损失。其次,我们提出了一种改进的扫描线优化技术,该技术结合了赢家通吃和动态规划。我们的算法在320×240视频上以20 fps的速度运行,视差搜索范围为24。在Middlebury基准数据集上对实验结果进行了评估,结果表明该方法在所有实时立体图像算法中具有最佳的重建精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Accurate Stereo Matching Using Modified Two-Pass Aggregation and Winner-Take-All Guided Dynamic Programming
This paper presents a real-time stereo algorithm that estimates scene depth information with high accuracy. Our algorithm consists of two novel components. First, we apply a modified two-pass aggregation to the adaptive cost aggregation process, use color similarity to calculate support weight, and introduce a credibility estimation mechanism to reduce accuracy loss during two-pass aggregation. Second, we present an amended scan-line optimization technique, which combines winner-take-all and dynamic programming. Our algorithm runs at 20 fps on 320×240 video with a disparity search range of 24. The experimental results are evaluated on the Middlebury benchmark data sets, showing that our method achieves the best reconstruction accuracy among all real-time stereo algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信