用用户反馈评估网络事件的影响

Shobha Venkataraman, Jia Wang
{"title":"用用户反馈评估网络事件的影响","authors":"Shobha Venkataraman, Jia Wang","doi":"10.1145/3229543.3229553","DOIUrl":null,"url":null,"abstract":"User feedback data, generated when users call customer care agents with problems, is a valuable source of data for understanding network problems from users' perspectives. However, this data is extremely noisy. In this paper, we design a framework, LOTUS, to assess the user impact of network events from the user feedback, through a novel algorithmic composition of co-training and spatial scan statistics. Through experimental analysis on synthetic and real data, we show the accuracy and practical nature of LOTUS.","PeriodicalId":198478,"journal":{"name":"Proceedings of the 2018 Workshop on Network Meets AI & ML","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Assessing the Impact of Network Events with User Feedback\",\"authors\":\"Shobha Venkataraman, Jia Wang\",\"doi\":\"10.1145/3229543.3229553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User feedback data, generated when users call customer care agents with problems, is a valuable source of data for understanding network problems from users' perspectives. However, this data is extremely noisy. In this paper, we design a framework, LOTUS, to assess the user impact of network events from the user feedback, through a novel algorithmic composition of co-training and spatial scan statistics. Through experimental analysis on synthetic and real data, we show the accuracy and practical nature of LOTUS.\",\"PeriodicalId\":198478,\"journal\":{\"name\":\"Proceedings of the 2018 Workshop on Network Meets AI & ML\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 Workshop on Network Meets AI & ML\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3229543.3229553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Workshop on Network Meets AI & ML","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3229543.3229553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

当用户因问题呼叫客服座席时产生的用户反馈数据,是从用户角度理解网络问题的宝贵数据来源。然而,这些数据非常嘈杂。在本文中,我们设计了一个框架LOTUS,通过共同训练和空间扫描统计的新算法组合,从用户反馈中评估网络事件对用户的影响。通过对合成数据和真实数据的实验分析,证明了LOTUS的准确性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Impact of Network Events with User Feedback
User feedback data, generated when users call customer care agents with problems, is a valuable source of data for understanding network problems from users' perspectives. However, this data is extremely noisy. In this paper, we design a framework, LOTUS, to assess the user impact of network events from the user feedback, through a novel algorithmic composition of co-training and spatial scan statistics. Through experimental analysis on synthetic and real data, we show the accuracy and practical nature of LOTUS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信