教程:信号/图像处理的数字神经计算

S. Kung
{"title":"教程:信号/图像处理的数字神经计算","authors":"S. Kung","doi":"10.1109/NNSP.1991.239479","DOIUrl":null,"url":null,"abstract":"The requirements on both the computations and storage for neural networks are extremely demanding. Neural information processing would be practical only when efficient and high-speed computing hardware can be made available. The author reviews several approaches to architecture and implementation of neural networks for signal and image processing. The author discusses direct design of dedicated neural networks implemented by a variety of hardware technologies (e.g. CMOS, CCD), and introduces an indirect design approach based on matrix-based mapping methodology for systolic/wavefront array processor. The array processors mapping technique presented should be applicable to both programmable neurocomputer and dedicated digital or analog neural processing circuits. Several key general-purpose and system-oriented designs are surveyed. Key design examples of existing parallel processing neurocomputers are also discussed.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Tutorial: digital neurocomputing for signal/image processing\",\"authors\":\"S. Kung\",\"doi\":\"10.1109/NNSP.1991.239479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The requirements on both the computations and storage for neural networks are extremely demanding. Neural information processing would be practical only when efficient and high-speed computing hardware can be made available. The author reviews several approaches to architecture and implementation of neural networks for signal and image processing. The author discusses direct design of dedicated neural networks implemented by a variety of hardware technologies (e.g. CMOS, CCD), and introduces an indirect design approach based on matrix-based mapping methodology for systolic/wavefront array processor. The array processors mapping technique presented should be applicable to both programmable neurocomputer and dedicated digital or analog neural processing circuits. Several key general-purpose and system-oriented designs are surveyed. Key design examples of existing parallel processing neurocomputers are also discussed.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

神经网络对计算和存储的要求都非常高。只有当高效、高速的计算硬件可用时,神经信息处理才有可能实现。作者回顾了几种用于信号和图像处理的神经网络的结构和实现方法。作者讨论了由各种硬件技术(如CMOS、CCD)实现的专用神经网络的直接设计,并介绍了一种基于矩阵映射方法的收缩/波前阵列处理器的间接设计方法。所提出的阵列处理器映射技术既适用于可编程神经计算机,也适用于专用的数字或模拟神经处理电路。概述了几个关键的通用和面向系统的设计。讨论了现有并行处理神经计算机的关键设计实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tutorial: digital neurocomputing for signal/image processing
The requirements on both the computations and storage for neural networks are extremely demanding. Neural information processing would be practical only when efficient and high-speed computing hardware can be made available. The author reviews several approaches to architecture and implementation of neural networks for signal and image processing. The author discusses direct design of dedicated neural networks implemented by a variety of hardware technologies (e.g. CMOS, CCD), and introduces an indirect design approach based on matrix-based mapping methodology for systolic/wavefront array processor. The array processors mapping technique presented should be applicable to both programmable neurocomputer and dedicated digital or analog neural processing circuits. Several key general-purpose and system-oriented designs are surveyed. Key design examples of existing parallel processing neurocomputers are also discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信