脑功能网络的半监督学习

Yuhui Du, J. Sui, Qingbao Yu, Hao He, V. Calhoun
{"title":"脑功能网络的半监督学习","authors":"Yuhui Du, J. Sui, Qingbao Yu, Hao He, V. Calhoun","doi":"10.1109/ISBI.2014.6867794","DOIUrl":null,"url":null,"abstract":"Identification of subject-specific brain functional networks of interest is of great importance in fMRI based brain network analysis. In this study, a novel method is proposed to identify subject-specific brain functional networks using a graph theory based semi-supervised learning technique by incorporating not only prior information of the network to be identified as similarly used in seed region based correlation analysis (SCA) but also background information, which leads to robust performance for fMRI data with low signal noise ratio (SNR). Comparison experiments on both simulated and real fMRI data demonstrate that our method is more robust and accurate for identification of known brain functional networks than SCA, blind independent component analysis (ICA), and clustering based methods including Ncut and Kmeans.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Semi-supervised learning of brain functional networks\",\"authors\":\"Yuhui Du, J. Sui, Qingbao Yu, Hao He, V. Calhoun\",\"doi\":\"10.1109/ISBI.2014.6867794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of subject-specific brain functional networks of interest is of great importance in fMRI based brain network analysis. In this study, a novel method is proposed to identify subject-specific brain functional networks using a graph theory based semi-supervised learning technique by incorporating not only prior information of the network to be identified as similarly used in seed region based correlation analysis (SCA) but also background information, which leads to robust performance for fMRI data with low signal noise ratio (SNR). Comparison experiments on both simulated and real fMRI data demonstrate that our method is more robust and accurate for identification of known brain functional networks than SCA, blind independent component analysis (ICA), and clustering based methods including Ncut and Kmeans.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在基于功能磁共振成像的脑网络分析中,识别感兴趣的脑功能网络具有重要意义。在本研究中,提出了一种基于图论的半监督学习技术来识别受试者特定的脑功能网络的新方法,该方法不仅结合了网络的先验信息(类似于基于种子区域的相关分析(SCA)),还结合了背景信息,从而对低信噪比(SNR)的fMRI数据具有鲁棒性。模拟和真实fMRI数据的对比实验表明,我们的方法在识别已知脑功能网络方面比SCA、盲独立分量分析(ICA)和基于Ncut和Kmeans的聚类方法更具鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-supervised learning of brain functional networks
Identification of subject-specific brain functional networks of interest is of great importance in fMRI based brain network analysis. In this study, a novel method is proposed to identify subject-specific brain functional networks using a graph theory based semi-supervised learning technique by incorporating not only prior information of the network to be identified as similarly used in seed region based correlation analysis (SCA) but also background information, which leads to robust performance for fMRI data with low signal noise ratio (SNR). Comparison experiments on both simulated and real fMRI data demonstrate that our method is more robust and accurate for identification of known brain functional networks than SCA, blind independent component analysis (ICA), and clustering based methods including Ncut and Kmeans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信