任务依赖拟人抓取姿势对日常物品抓取影响的研究

Niko Kleer, Martin Feick
{"title":"任务依赖拟人抓取姿势对日常物品抓取影响的研究","authors":"Niko Kleer, Martin Feick","doi":"10.1109/Humanoids53995.2022.10000198","DOIUrl":null,"url":null,"abstract":"Robots using anthropomorphic hands and pros-thesis grasping applications frequently rely on a corpus of labeled images for training a learning model that predicts a suitable grasping pose for grasping an object. However, factors such as an object's physical properties, the intended task, and the environment influence the choice of a suitable grasping pose. As a result, the annotation of such images introduces a level of complexity by itself, therefore making it challenging to establish a systematic labeling approach. This paper presents three crowdsourcing studies that focus on collecting task-dependent grasp pose labels for one hundred everyday objects. Finally, we report on our investigations regarding the influence of task-dependence on the choice of a grasping pose and make our collected data available in the form of a dataset.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Influence of Task Dependent Anthropomorphic Grasping Poses for Everyday Objects\",\"authors\":\"Niko Kleer, Martin Feick\",\"doi\":\"10.1109/Humanoids53995.2022.10000198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robots using anthropomorphic hands and pros-thesis grasping applications frequently rely on a corpus of labeled images for training a learning model that predicts a suitable grasping pose for grasping an object. However, factors such as an object's physical properties, the intended task, and the environment influence the choice of a suitable grasping pose. As a result, the annotation of such images introduces a level of complexity by itself, therefore making it challenging to establish a systematic labeling approach. This paper presents three crowdsourcing studies that focus on collecting task-dependent grasp pose labels for one hundred everyday objects. Finally, we report on our investigations regarding the influence of task-dependence on the choice of a grasping pose and make our collected data available in the form of a dataset.\",\"PeriodicalId\":180816,\"journal\":{\"name\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids53995.2022.10000198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用拟人化手和人工抓取应用程序的机器人经常依赖于标记图像的语料库来训练学习模型,该模型可以预测抓取物体的合适抓取姿势。然而,诸如物体的物理特性、预期任务和环境等因素会影响合适抓取姿势的选择。因此,这类图像的注释本身就引入了一定程度的复杂性,因此建立系统的标记方法具有挑战性。本文提出了三个众包研究,重点是收集100个日常物品的任务依赖抓取姿势标签。最后,我们报告了我们关于任务依赖性对抓取姿势选择的影响的调查,并将我们收集到的数据以数据集的形式提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on the Influence of Task Dependent Anthropomorphic Grasping Poses for Everyday Objects
Robots using anthropomorphic hands and pros-thesis grasping applications frequently rely on a corpus of labeled images for training a learning model that predicts a suitable grasping pose for grasping an object. However, factors such as an object's physical properties, the intended task, and the environment influence the choice of a suitable grasping pose. As a result, the annotation of such images introduces a level of complexity by itself, therefore making it challenging to establish a systematic labeling approach. This paper presents three crowdsourcing studies that focus on collecting task-dependent grasp pose labels for one hundred everyday objects. Finally, we report on our investigations regarding the influence of task-dependence on the choice of a grasping pose and make our collected data available in the form of a dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信