基于数据挖掘算法的电力系统状态识别

Prem T. Alluri, S. K. Solanki, J. Solanki, T. Menzies
{"title":"基于数据挖掘算法的电力系统状态识别","authors":"Prem T. Alluri, S. K. Solanki, J. Solanki, T. Menzies","doi":"10.1109/NAPS.2013.6666949","DOIUrl":null,"url":null,"abstract":"This paper describes an approach to identify the state of a power system using Data Mining Algorithms. With the advent of Phasor Measurement Units (PMU), a huge amount of power system data is being stored day-to-day in the Phasor Data Collectors (PDCs). Knowledge discovery and machine learning techniques can make use of this data to extract valuable information and interesting patterns in these databases. In this paper, Symbolic Aggregate ApproXimation (SAX) is used to convert the time stamped phasor data from the PMUs into symbolic strings and Data Mining (DM) algorithms are used to predict the current state of a power system. Along with the state, the location and cause of disturbance is also identified in minimal time. The effectiveness of different DM algorithms for determining state of a power system is also shown using the measures of accuracy, precision and recall.","PeriodicalId":421943,"journal":{"name":"2013 North American Power Symposium (NAPS)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power system state recognition using data mining algorithms\",\"authors\":\"Prem T. Alluri, S. K. Solanki, J. Solanki, T. Menzies\",\"doi\":\"10.1109/NAPS.2013.6666949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an approach to identify the state of a power system using Data Mining Algorithms. With the advent of Phasor Measurement Units (PMU), a huge amount of power system data is being stored day-to-day in the Phasor Data Collectors (PDCs). Knowledge discovery and machine learning techniques can make use of this data to extract valuable information and interesting patterns in these databases. In this paper, Symbolic Aggregate ApproXimation (SAX) is used to convert the time stamped phasor data from the PMUs into symbolic strings and Data Mining (DM) algorithms are used to predict the current state of a power system. Along with the state, the location and cause of disturbance is also identified in minimal time. The effectiveness of different DM algorithms for determining state of a power system is also shown using the measures of accuracy, precision and recall.\",\"PeriodicalId\":421943,\"journal\":{\"name\":\"2013 North American Power Symposium (NAPS)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2013.6666949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2013.6666949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种利用数据挖掘算法识别电力系统状态的方法。随着相量测量单元(PMU)的出现,大量的电力系统数据每天都被存储在相量数据收集器(PDCs)中。知识发现和机器学习技术可以利用这些数据从这些数据库中提取有价值的信息和有趣的模式。本文采用符号聚合近似(Symbolic Aggregate ApproXimation, SAX)将pmu中带有时间戳的相量数据转换为符号字符串,并采用数据挖掘(data Mining, DM)算法对电力系统的当前状态进行预测。除了状态之外,还可以在最短的时间内确定干扰的位置和原因。本文还从准确度、精密度和召回率三个方面对不同的决策算法在确定电力系统状态方面的有效性进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power system state recognition using data mining algorithms
This paper describes an approach to identify the state of a power system using Data Mining Algorithms. With the advent of Phasor Measurement Units (PMU), a huge amount of power system data is being stored day-to-day in the Phasor Data Collectors (PDCs). Knowledge discovery and machine learning techniques can make use of this data to extract valuable information and interesting patterns in these databases. In this paper, Symbolic Aggregate ApproXimation (SAX) is used to convert the time stamped phasor data from the PMUs into symbolic strings and Data Mining (DM) algorithms are used to predict the current state of a power system. Along with the state, the location and cause of disturbance is also identified in minimal time. The effectiveness of different DM algorithms for determining state of a power system is also shown using the measures of accuracy, precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信