在没有反馈的情况下学习用户偏好

Wei Zhang, Chris Challis
{"title":"在没有反馈的情况下学习用户偏好","authors":"Wei Zhang, Chris Challis","doi":"10.1109/DSAA53316.2021.9564131","DOIUrl":null,"url":null,"abstract":"Recommending relevant data is vital for helping users to navigate through the ocean of data. We developed a service that learns user preferences through natural user interactions, without asking for user feedbacks, so users are not distracted from their regular workflow. Our approach has few parameters and very low time and space complexities, making it suitable for large scale applications. We demonstrate through experiments how it converges to user preferences and adapts to user behavior changes.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning User Preferences Without Feedbacks\",\"authors\":\"Wei Zhang, Chris Challis\",\"doi\":\"10.1109/DSAA53316.2021.9564131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommending relevant data is vital for helping users to navigate through the ocean of data. We developed a service that learns user preferences through natural user interactions, without asking for user feedbacks, so users are not distracted from their regular workflow. Our approach has few parameters and very low time and space complexities, making it suitable for large scale applications. We demonstrate through experiments how it converges to user preferences and adapts to user behavior changes.\",\"PeriodicalId\":129612,\"journal\":{\"name\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA53316.2021.9564131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推荐相关数据对于帮助用户在数据海洋中导航至关重要。我们开发了一项服务,通过自然的用户交互来学习用户偏好,而不要求用户反馈,所以用户不会从他们的常规工作流程中分心。我们的方法具有很少的参数和非常低的时间和空间复杂性,使其适合大规模应用。我们通过实验证明了它如何收敛于用户偏好并适应用户行为的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning User Preferences Without Feedbacks
Recommending relevant data is vital for helping users to navigate through the ocean of data. We developed a service that learns user preferences through natural user interactions, without asking for user feedbacks, so users are not distracted from their regular workflow. Our approach has few parameters and very low time and space complexities, making it suitable for large scale applications. We demonstrate through experiments how it converges to user preferences and adapts to user behavior changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信