使用期权隐含风险措施预测风险价值

Kai Schindelhauer, Chen Zhou
{"title":"使用期权隐含风险措施预测风险价值","authors":"Kai Schindelhauer, Chen Zhou","doi":"10.2139/ssrn.3279398","DOIUrl":null,"url":null,"abstract":"This paper investigates the prediction of Value-at-Risk (VaR) using option-implied information obtained by the maximum entropy method. The maximum entropy method provides an estimate of the risk-neutral distribution based on option prices. Besides commonly used implied volatility, we obtain implied skewness, kurtosis and quantile from the estimated risk-neutral distribution. We find that using the implied volatility and implied quantile as explanatory variables significantly outperforms considered benchmarks in predicting the VaR, including the commonly used GARCH(1,1)-model. This holds for all considered VaR prediction models and VaR probability levels. Overall, a simple quantile regression model performs best for all considered VaR probability levels and forecast horizons.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Value-at-Risk Prediction Using Option-Implied Risk Measures\",\"authors\":\"Kai Schindelhauer, Chen Zhou\",\"doi\":\"10.2139/ssrn.3279398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the prediction of Value-at-Risk (VaR) using option-implied information obtained by the maximum entropy method. The maximum entropy method provides an estimate of the risk-neutral distribution based on option prices. Besides commonly used implied volatility, we obtain implied skewness, kurtosis and quantile from the estimated risk-neutral distribution. We find that using the implied volatility and implied quantile as explanatory variables significantly outperforms considered benchmarks in predicting the VaR, including the commonly used GARCH(1,1)-model. This holds for all considered VaR prediction models and VaR probability levels. Overall, a simple quantile regression model performs best for all considered VaR probability levels and forecast horizons.\",\"PeriodicalId\":203996,\"journal\":{\"name\":\"ERN: Value-at-Risk (Topic)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Value-at-Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3279398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3279398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了利用最大熵法获得的期权隐含信息对风险价值(VaR)的预测。最大熵法提供了基于期权价格的风险中性分布估计。除了常用的隐含波动率外,我们还从估计的风险中性分布中得到隐含偏度、峰度和分位数。我们发现,使用隐含波动率和隐含分位数作为解释变量,在预测VaR方面明显优于考虑的基准,包括常用的GARCH(1,1)模型。这适用于所有考虑的VaR预测模型和VaR概率水平。总的来说,一个简单的分位数回归模型对所有考虑的VaR概率水平和预测范围表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Value-at-Risk Prediction Using Option-Implied Risk Measures
This paper investigates the prediction of Value-at-Risk (VaR) using option-implied information obtained by the maximum entropy method. The maximum entropy method provides an estimate of the risk-neutral distribution based on option prices. Besides commonly used implied volatility, we obtain implied skewness, kurtosis and quantile from the estimated risk-neutral distribution. We find that using the implied volatility and implied quantile as explanatory variables significantly outperforms considered benchmarks in predicting the VaR, including the commonly used GARCH(1,1)-model. This holds for all considered VaR prediction models and VaR probability levels. Overall, a simple quantile regression model performs best for all considered VaR probability levels and forecast horizons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信