利用图谱搜索好的不规则低密度奇偶校验码

Dawei Yin, Xiaojing Zhang, Xichao Shu, Guiying Yan, Guanghui Wang
{"title":"利用图谱搜索好的不规则低密度奇偶校验码","authors":"Dawei Yin, Xiaojing Zhang, Xichao Shu, Guiying Yan, Guanghui Wang","doi":"10.1109/PIMRC50174.2021.9569696","DOIUrl":null,"url":null,"abstract":"Research on the expander code shows that for a regular low-density parity-check (LDPC) code, the Tanner graph’s spectrum determines its properties, such as the minimum distance and the size of stopping sets. In this study, we demonstrate theoretically and experimentally that the performance of irregular LDPC codes is related to the graph spectrum. Our observations may provide an efficient metric to search for good irregular LDPC codes.","PeriodicalId":283606,"journal":{"name":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Search for Good Irregular Low-Density Parity-Check Codes Via Graph Spectrum\",\"authors\":\"Dawei Yin, Xiaojing Zhang, Xichao Shu, Guiying Yan, Guanghui Wang\",\"doi\":\"10.1109/PIMRC50174.2021.9569696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on the expander code shows that for a regular low-density parity-check (LDPC) code, the Tanner graph’s spectrum determines its properties, such as the minimum distance and the size of stopping sets. In this study, we demonstrate theoretically and experimentally that the performance of irregular LDPC codes is related to the graph spectrum. Our observations may provide an efficient metric to search for good irregular LDPC codes.\",\"PeriodicalId\":283606,\"journal\":{\"name\":\"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC50174.2021.9569696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC50174.2021.9569696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对扩展码的研究表明,对于规则的低密度奇偶校验码,坦纳图的谱决定了其最小距离和停止集的大小等性质。在本研究中,我们从理论和实验上证明了不规则LDPC码的性能与图谱有关。我们的观察结果可以为搜索良好的不规则LDPC码提供一个有效的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Search for Good Irregular Low-Density Parity-Check Codes Via Graph Spectrum
Research on the expander code shows that for a regular low-density parity-check (LDPC) code, the Tanner graph’s spectrum determines its properties, such as the minimum distance and the size of stopping sets. In this study, we demonstrate theoretically and experimentally that the performance of irregular LDPC codes is related to the graph spectrum. Our observations may provide an efficient metric to search for good irregular LDPC codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信