水下航行器小组水下通信与分布式定位

A. Caiti, V. Calabrò, T. Fabbri, D. Fenucci, A. Munafò
{"title":"水下航行器小组水下通信与分布式定位","authors":"A. Caiti, V. Calabrò, T. Fabbri, D. Fenucci, A. Munafò","doi":"10.1109/OCEANS-BERGEN.2013.6608166","DOIUrl":null,"url":null,"abstract":"This paper examines a cooperative localization algorithm for teams of Autonomous Underwater Vehicles, as developed within the project THESAURUS. The localization algorithm is strongly dependent on the underlying acoustic communication network, as it only uses acoustic data (range, USBL measurements and transmission of navigation information) to reduce the error and the uncertainty. The localization algorithm is based on the use of an Extended Kalman filter to maintain a model of the entire swarm, while adapting the measurement equation on the basis of the specific measurement available. Simulative results show how the algorithm is effective in fusing the information. The underwater communication networks is based on a time-division multiplexing scheme and on the use of the MOOS pub/sub for application integration. Implementation details of the network are provided, together with a description of how the positioning systems (e.g. USBL) have been integrated within the constraints of the network structure. Preliminary experimental results on localization and communication are provided as obtained from a recent engineering sea trial.","PeriodicalId":224246,"journal":{"name":"2013 MTS/IEEE OCEANS - Bergen","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Underwater communication and distributed localization of AUV teams\",\"authors\":\"A. Caiti, V. Calabrò, T. Fabbri, D. Fenucci, A. Munafò\",\"doi\":\"10.1109/OCEANS-BERGEN.2013.6608166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines a cooperative localization algorithm for teams of Autonomous Underwater Vehicles, as developed within the project THESAURUS. The localization algorithm is strongly dependent on the underlying acoustic communication network, as it only uses acoustic data (range, USBL measurements and transmission of navigation information) to reduce the error and the uncertainty. The localization algorithm is based on the use of an Extended Kalman filter to maintain a model of the entire swarm, while adapting the measurement equation on the basis of the specific measurement available. Simulative results show how the algorithm is effective in fusing the information. The underwater communication networks is based on a time-division multiplexing scheme and on the use of the MOOS pub/sub for application integration. Implementation details of the network are provided, together with a description of how the positioning systems (e.g. USBL) have been integrated within the constraints of the network structure. Preliminary experimental results on localization and communication are provided as obtained from a recent engineering sea trial.\",\"PeriodicalId\":224246,\"journal\":{\"name\":\"2013 MTS/IEEE OCEANS - Bergen\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 MTS/IEEE OCEANS - Bergen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS-BERGEN.2013.6608166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 MTS/IEEE OCEANS - Bergen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-BERGEN.2013.6608166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文研究了自主水下航行器团队的合作定位算法,该算法是在THESAURUS项目中开发的。定位算法强烈依赖底层的声学通信网络,因为它只使用声学数据(距离、USBL测量和导航信息的传输)来减少误差和不确定性。定位算法基于使用扩展卡尔曼滤波来维持整个群体的模型,同时根据可用的具体测量值调整测量方程。仿真结果表明,该算法在信息融合方面是有效的。该水下通信网络基于时分复用方案,并使用MOOS pub/sub进行应用集成。提供了网络的实施细节,以及如何在网络结构的约束下集成定位系统(例如USBL)的描述。在最近的一次工程海试中,给出了定位和通信的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underwater communication and distributed localization of AUV teams
This paper examines a cooperative localization algorithm for teams of Autonomous Underwater Vehicles, as developed within the project THESAURUS. The localization algorithm is strongly dependent on the underlying acoustic communication network, as it only uses acoustic data (range, USBL measurements and transmission of navigation information) to reduce the error and the uncertainty. The localization algorithm is based on the use of an Extended Kalman filter to maintain a model of the entire swarm, while adapting the measurement equation on the basis of the specific measurement available. Simulative results show how the algorithm is effective in fusing the information. The underwater communication networks is based on a time-division multiplexing scheme and on the use of the MOOS pub/sub for application integration. Implementation details of the network are provided, together with a description of how the positioning systems (e.g. USBL) have been integrated within the constraints of the network structure. Preliminary experimental results on localization and communication are provided as obtained from a recent engineering sea trial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信