利用新一代化学物质和纳米材料改善水驱过程中微乳液的生成和稳定性

Jungin Lee, T. Babadagli
{"title":"利用新一代化学物质和纳米材料改善水驱过程中微乳液的生成和稳定性","authors":"Jungin Lee, T. Babadagli","doi":"10.2118/191171-MS","DOIUrl":null,"url":null,"abstract":"\n This study focuses on the ability of complex colloidal solution to stabilize a heavy oil-brine Pickering emulsion by changing the activity at the interface between heavy oil and brine. After testing many different combinations of anionic and cationic surfactants and nano-particles, we formulated the best stability options and created oil-in-water Pickering emulsions stabilized by silica, a cationic surfactant [dodecyltrimethylammonium bromide (DTAB)], and an anionic surfactant [alcohol propoxy sulfate (Alfoterra S23-7S-90)]. Then, various core flooding experiments were conducted in order to demonstrate the practical ability of the created emulsion system and observe its capacity to enhance oil recovery. Rate-dependency flooding tests were also conducted to determine the optimal flow rate required for heavy oil production through emulsification for different permeability media. Ultimately, slim tube sandpack flooding experiment at the optimal rate was conducted to confirm in-situ emulsion generation and to support the potential use of the chemical combination in the heavy oil industry.","PeriodicalId":415543,"journal":{"name":"Day 2 Tue, June 26, 2018","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improvement of Microemulsion Generation and Stability Using New Generation Chemicals and Nano Materials During Waterflooding as a Cost-Efficient Heavy-Oil Recovery Method\",\"authors\":\"Jungin Lee, T. Babadagli\",\"doi\":\"10.2118/191171-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study focuses on the ability of complex colloidal solution to stabilize a heavy oil-brine Pickering emulsion by changing the activity at the interface between heavy oil and brine. After testing many different combinations of anionic and cationic surfactants and nano-particles, we formulated the best stability options and created oil-in-water Pickering emulsions stabilized by silica, a cationic surfactant [dodecyltrimethylammonium bromide (DTAB)], and an anionic surfactant [alcohol propoxy sulfate (Alfoterra S23-7S-90)]. Then, various core flooding experiments were conducted in order to demonstrate the practical ability of the created emulsion system and observe its capacity to enhance oil recovery. Rate-dependency flooding tests were also conducted to determine the optimal flow rate required for heavy oil production through emulsification for different permeability media. Ultimately, slim tube sandpack flooding experiment at the optimal rate was conducted to confirm in-situ emulsion generation and to support the potential use of the chemical combination in the heavy oil industry.\",\"PeriodicalId\":415543,\"journal\":{\"name\":\"Day 2 Tue, June 26, 2018\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, June 26, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191171-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, June 26, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191171-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究的重点是复杂胶体溶液通过改变稠油和盐水界面的活性来稳定稠油-盐水皮克林乳状液的能力。在测试了阴离子、阳离子表面活性剂和纳米颗粒的多种不同组合后,我们制定了最佳的稳定性选择,并制成了由二氧化硅、阳离子表面活性剂[十二烷基三甲基溴化铵(DTAB)]和阴离子表面活性剂[硫酸醇丙氧基(Alfoterra S23-7S-90)]稳定的水包油Pickering乳状液。然后,进行了各种岩心驱油实验,以证明所创建的乳化液体系的实用能力,并观察其提高采收率的能力。还进行了速率相关的驱油试验,以确定不同渗透率介质乳化稠油开采所需的最佳流量。最终,以最佳速率进行了细管砂包驱实验,以确认原位乳化液的生成,并支持该化学组合在重油工业中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of Microemulsion Generation and Stability Using New Generation Chemicals and Nano Materials During Waterflooding as a Cost-Efficient Heavy-Oil Recovery Method
This study focuses on the ability of complex colloidal solution to stabilize a heavy oil-brine Pickering emulsion by changing the activity at the interface between heavy oil and brine. After testing many different combinations of anionic and cationic surfactants and nano-particles, we formulated the best stability options and created oil-in-water Pickering emulsions stabilized by silica, a cationic surfactant [dodecyltrimethylammonium bromide (DTAB)], and an anionic surfactant [alcohol propoxy sulfate (Alfoterra S23-7S-90)]. Then, various core flooding experiments were conducted in order to demonstrate the practical ability of the created emulsion system and observe its capacity to enhance oil recovery. Rate-dependency flooding tests were also conducted to determine the optimal flow rate required for heavy oil production through emulsification for different permeability media. Ultimately, slim tube sandpack flooding experiment at the optimal rate was conducted to confirm in-situ emulsion generation and to support the potential use of the chemical combination in the heavy oil industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信