循环镍镉电池脉冲放电时的性能

G. Rao, H. Vaidyanathan, W. Nakhleh
{"title":"循环镍镉电池脉冲放电时的性能","authors":"G. Rao, H. Vaidyanathan, W. Nakhleh","doi":"10.1109/BCAA.1997.574086","DOIUrl":null,"url":null,"abstract":"The pulse discharge behavior of a 9-Ah, 12-V nickel-cadmium (Ni-Cd) battery fabricated for the FAST program was studied. The response of the battery voltage to a pulse with a current of 60 A and duration of 10 to 200 ms was measured, along with the capacity remaining at the end of pulse discharge. The maximum drop in voltage at the beginning of the pulse was 505 to 1,049 mV, and battery capacity remained stable.","PeriodicalId":344507,"journal":{"name":"The Twelfth Annual Battery Conference on Applications and Advances","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of a cycled Ni-Cd battery during pulse discharge\",\"authors\":\"G. Rao, H. Vaidyanathan, W. Nakhleh\",\"doi\":\"10.1109/BCAA.1997.574086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pulse discharge behavior of a 9-Ah, 12-V nickel-cadmium (Ni-Cd) battery fabricated for the FAST program was studied. The response of the battery voltage to a pulse with a current of 60 A and duration of 10 to 200 ms was measured, along with the capacity remaining at the end of pulse discharge. The maximum drop in voltage at the beginning of the pulse was 505 to 1,049 mV, and battery capacity remained stable.\",\"PeriodicalId\":344507,\"journal\":{\"name\":\"The Twelfth Annual Battery Conference on Applications and Advances\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Twelfth Annual Battery Conference on Applications and Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCAA.1997.574086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Twelfth Annual Battery Conference on Applications and Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCAA.1997.574086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了用于FAST项目的9 ah, 12 v镍镉电池的脉冲放电行为。测量了电池电压对电流为60 a、持续时间为10 ~ 200 ms的脉冲的响应,以及脉冲放电结束时剩余的容量。脉冲开始时电压最大下降505 ~ 1049 mV,电池容量保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior of a cycled Ni-Cd battery during pulse discharge
The pulse discharge behavior of a 9-Ah, 12-V nickel-cadmium (Ni-Cd) battery fabricated for the FAST program was studied. The response of the battery voltage to a pulse with a current of 60 A and duration of 10 to 200 ms was measured, along with the capacity remaining at the end of pulse discharge. The maximum drop in voltage at the beginning of the pulse was 505 to 1,049 mV, and battery capacity remained stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信