利用单分子结中的等离子体捕获

Katrin F. Domke, Albert C. Aragonès
{"title":"利用单分子结中的等离子体捕获","authors":"Katrin F. Domke, Albert C. Aragonès","doi":"10.1117/12.2594096","DOIUrl":null,"url":null,"abstract":"Inspired by the proposal that single molecules will be functional elements of future nanoelectronic devices, there exists considerable interest in understanding charge transport in individual molecules. \nTo study charge transport in single-molecule junctions, we exploit the STM microscope’s Blinking approach. It is a “current vs. time” molecular capturing procedure, able to electrically detect spontaneous individual molecular junctions under a constant sub-nm precise interelectrode distance. Here, we will present a novel plasmon-supported methodology (PBJ), based on Blinking to increase the timescale of the junctions. The (stabilising) force of the nearfield gradient is exploited to provide additional endurance to junctions, increasing the detected lifetime from hundreds of milliseconds to the order of seconds. Also, we will present our advances exploiting PBJ under electrochemical control, trapping redox metalloproteins resonant to the localized surface plasmon excitation wavelength.","PeriodicalId":243760,"journal":{"name":"Enhanced Spectroscopies and Nanoimaging 2021","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting the plasmonic trapping in single-molecule junctions\",\"authors\":\"Katrin F. Domke, Albert C. Aragonès\",\"doi\":\"10.1117/12.2594096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the proposal that single molecules will be functional elements of future nanoelectronic devices, there exists considerable interest in understanding charge transport in individual molecules. \\nTo study charge transport in single-molecule junctions, we exploit the STM microscope’s Blinking approach. It is a “current vs. time” molecular capturing procedure, able to electrically detect spontaneous individual molecular junctions under a constant sub-nm precise interelectrode distance. Here, we will present a novel plasmon-supported methodology (PBJ), based on Blinking to increase the timescale of the junctions. The (stabilising) force of the nearfield gradient is exploited to provide additional endurance to junctions, increasing the detected lifetime from hundreds of milliseconds to the order of seconds. Also, we will present our advances exploiting PBJ under electrochemical control, trapping redox metalloproteins resonant to the localized surface plasmon excitation wavelength.\",\"PeriodicalId\":243760,\"journal\":{\"name\":\"Enhanced Spectroscopies and Nanoimaging 2021\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enhanced Spectroscopies and Nanoimaging 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2594096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enhanced Spectroscopies and Nanoimaging 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受单分子将成为未来纳米电子器件的功能元件的建议的启发,人们对理解单个分子中的电荷输运有着相当大的兴趣。为了研究单分子结中的电荷输运,我们利用了STM显微镜的闪烁方法。这是一种“电流与时间”的分子捕获过程,能够在恒定的亚纳米精确电极间距离下电检测自发的单个分子结。在这里,我们将提出一种新的等离子体支持方法(PBJ),基于闪烁来增加连接的时间尺度。利用近场梯度的(稳定)力为连接点提供额外的耐久性,将检测寿命从数百毫秒增加到秒级。此外,我们将介绍在电化学控制下利用PBJ捕获与局部表面等离子激元激发波长共振的氧化还原金属蛋白的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting the plasmonic trapping in single-molecule junctions
Inspired by the proposal that single molecules will be functional elements of future nanoelectronic devices, there exists considerable interest in understanding charge transport in individual molecules. To study charge transport in single-molecule junctions, we exploit the STM microscope’s Blinking approach. It is a “current vs. time” molecular capturing procedure, able to electrically detect spontaneous individual molecular junctions under a constant sub-nm precise interelectrode distance. Here, we will present a novel plasmon-supported methodology (PBJ), based on Blinking to increase the timescale of the junctions. The (stabilising) force of the nearfield gradient is exploited to provide additional endurance to junctions, increasing the detected lifetime from hundreds of milliseconds to the order of seconds. Also, we will present our advances exploiting PBJ under electrochemical control, trapping redox metalloproteins resonant to the localized surface plasmon excitation wavelength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信